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1 Module Outline

Welcome to the High Performance Computing in Julia module! This book will
serve as the lecture notes to the module, covering and expanding upon the topics

in the lectures. Check out the website! for an overview of the MPAGS? module.  *https://jamiemair.github.io
/mpags-high-performance-compu
ting/overview/

1.1 Aims * Midlands Physics Alliance Grad-

uate School
The aim of this module is to provide the student with the tools to write fast and
efficient code. We will touch on a few algorithms and basic examples, but most
of the focus will be on the practical implementation. The module will teach the
students how to program in Julia and how to take advantage of modern hardware,
by being able to write parallel and GPU based code.

1.2 Prerequisites

In order to take this module, you should have the following prerequisites:
e Some recent programming experience (any language is fine).

e Basic mathematics skills. This includes basic algebra and some basic calculus
which is needed later in the module.

o A willingness to learn something new!


https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://jamiemair.github.io/mpags-high-performance-computing/overview/
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1.3 Other Information

The information for this course will be posted on the website3. This includes >https://jamiemair.github.io

details of the timetable, format and assessment of the module. The content of the {c ",‘pags -high- pjrfo”"a”ce' compu
ing/overview,

lectures will roughly follow the content in this book, however, this book will aim

to be more comprehensive.


https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://jamiemair.github.io/mpags-high-performance-computing/overview/

2 Getting Started

This chapter is dedicated to getting set up with all the software you will need to
follow along with the course and complete the assignments. The first assignment
of the module will have you complete this section. In this chapter, the following
will be covered:

e Downloading and installing Julia via Juliaup

e Installing Visual Studio Code

Installing Git and GitHub desktop

Creating a GitHub account

Using GitHub classroom

2.1 Installing Julia

There are a few ways to install Julia. It is recommended to use the latest version

of Julia, as there are frequent updates and improvements which are most likely

non-breaking. Usually, it is safe to update to the most recent version without

breaking your existing code. For this reason, we recommend using the juliaup® *https://github.com/Julialang
tool to download and manage which Julia version is installed on your machine. /3utiaup
Visit the juliaup GitHub page and follow the instructions in the README to install

this on your system.


https://github.com/JuliaLang/juliaup
https://github.com/JuliaLang/juliaup
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Once installed, run open a terminal®* and type This adds the most recent

juliaup add release

channel.
We also want to make this the default Julia installation, which can be done by
running the command

juliaup default release

Once this is done, you should be able to type julia into your terminal and
launch the REPL, showing the most recent version. At the time of writing the
version of Julia used is Julia v.1.8.4 (Dec 23, 2022).

2.2 Installing Visual Studio Code

Visual Studio Code (or VS Code) is a lightweight Integrated Development En-
vironment (IDE), which helps you write code. It supports a comprehensive
development experience for almost any programming language. It is currently
the most supported editor by the Julia developers.

Head to the download link3 below and follow the instructions to download
it for your platform. Visit the documentation for the VS Code Julia extension?.
Follow the instructions to download the official Julia extension.

You can start the Julia REPL (this stands for Read Evaluate Print Loop) by
pressing Ctrl+Shift+P to open the command palette and start typing in Start
REPL and then select the option to start the Julia REPL.

The reason that we want to use the integrated REPL is so that plot viewer and
other tools in Visual Studio Code can communicate with Julia. You can use any
terminal to run your Julia code, but this makes the development experience a bit
easier.

2.3 Installing Git and GitHub Desktop

In order to complete the assignments, you will need to use Git. No advanced Git
skills are required for this course, but it is highly recommended that you learn

> On Windows, you can use either
Powershell or Command Prompt,
which can be searched in the Start
Menu. On Mag, find a guide online
on how to open a terminal if you
do not know.

3https://code.visualstudio.c
om/
4https://code.visualstudio.c
om/docs/languages/julia


https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/julia
https://code.visualstudio.com/docs/languages/julia
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Figure 2.1. A screenshot of starting
a Julia REPL within Visual Studio
Code. This is done by using the
command palette, accessible using
Ctrl+Shift+P.

Figure 2.2. A screenshot of writing
code in the Julia REPL from within
Visual Studio Code. This REPL is
located in the "Terminal” window,
usually at the bottom of VS Code.
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the basics as this is an essential skill for any programmer. This module does
not require and actively discourages the use of Git via the command line. It is
recommended to use a Git GUI client (there are many to choose from) to interact
with Git. This section chooses GitHub Desktop, as this is one of the easiest Git
clients to use and is available for both Windows and MacOS.

2.3.1  GitHub Desktop

GitHub Desktop is what is known as a “Git Client”. Git is the underlying software
that tracks changes in your code. It works by looking at all the files in folder on
your computer and seeing if there are any changes. A repository is just a folder
for your project, which is tracked by the Git software. GitHub desktop gives you
a user-friendly way to interact with Git, instead of the user having to learn the
command line tools. Head to the GitHub desktop website> to download GitHub
desktop for your specified platform. Install the software and create a GitHub
account and login here.

2.3.2 Git

Installing the Git tool separately is a good idea since it can integrate with all of
your software tools. Most importantly, this allows you to use some of the source
control features inside VS Code. Head to the Git download page® to install Git on
your platform.

2.4 Creating a GitHub Account

GitHub will be used to store a copy of your code on the cloud, acting like a backup
and as a “source of truth” for the proper version of your code. This will act as
a “remote” for your repository. You will also hear the GitHub version of your
repository called the “origin”. You want to keep the GitHub version of your code
and your local version as close as possible, make sure to use the “fetch” and
”sync” buttons in the Git client as frequently as possible.

Follow the instructions to create an account or use your old one. You will need
this to login to the GitHub desktop client. This allows you to clone your private
repositories to your own machine.

5https://desktop.github.com/

®https://git-scm.com/download
s


https://desktop.github.com/
https://git-scm.com/downloads
https://git-scm.com/downloads

2.5. USING GITHUB CLASSROOM 11

2.5 Using GitHub Classroom

We are going to use GitHub classroom to assign workshops and projects to
each student. Every student will have their own separate repository for each
assignment. This will be hosted under our organisation, and not privately on
your account. If you want to keep a copy of this code after you graduate, make a
local copy. We would prefer if you not make any code from this module public,
for academic integrity purposes.

You will need a GitHub account to use GitHub classroom. Make sure you
are logged in on your browser and copy the assessment URL in a format like
https://classroom.github.com/a/XXXXXX. Accept the assignment and find your
name in the Moodle list, so we know whose GitHub accounts is whose. The repos-
itory will be created in the organisation page which will be linked in the Moodle
page. Search for your username to find the repositories that you have access to.
Clone this repository to your local machine.

2.6 Getting Help with Git

This module will not focus on the specifics of Git, and we highly recommend that
you make use of Google to find answers to specific questions. During this course,
the Git skills that are required are:

1. Cloning a Git repository to your local machine

2. Making local changes to your code, staging and committing them locally
3. Pushing your commits to the cloud”

4. Pulling changes from the cloud to your local machine

5. (Optional) Working in a separate branch and making Pull Requests to merge
your code into the main branch

Use these keywords to help your Google searches.

7 Sometimes called the origin. This
is where the code is hosted and
backed up on GitHub.






3 Hardware & Software Basics

This module was designed with students from non-Computer Science STEM back-
grounds, who may have never had any formal training in fundamental Computer
Science (or Software Engineering) topics. As being able to write high performance
code is highly dependent on a solid understanding of how a computer works, we
will start with a lightning tour through the fundamentals of modern hardware
and software. Here, we do not aim to provide a deep understanding of all the
nuances of these topics, but provide a guiding framework which we can use to
reason about the operation and optimisation of our own computer programs.

As modern computers are intractably varied and complex, it is often futile to
try and understand the operation of a specific computer in minute detail, however,
it certainly is possible to construct a useful mental model of a computer, to help us
ask questions and effectively investigate and find the answers to these questions.
This mental model will become essential when we start thinking about optimising
our code and making sure the code we write is correct.

3.1 Introduction to Hardware

Virtually all modern computers use a similar hardware architecture. There are
many universal standards which manufactures use to ensure they have high
compatibility across multiple devices. Today;, it is extremely easy to build up
a computer from a collection of components, which can all be produced from
different manufacturers - it essentially amounts to having a very expensive Lego
kit. We will briefly discuss the most important components which make up a
modern desktop computer.
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BUILD-GAMING-COMPUTERS.COM a

3.1.1  Motherboard

Let’s take a closer look at Figure 3.1. This picture depicts a modern motherboard
with many sections labelled. A motherboard acts as the glue which connects all the
disparate parts of the computer together. It helps facilitate power delivery to each
component’, along with data transfer to facilitate communication between all the
different parts. Motherboards also provide most of the external connections to
the outside world, and handle the communication to the parts inside. Most of
the ports you will see on the back of a computer are directly connected to the
motherboard.

3.1.2  Central Processing Unit (CPU)

The CPU is the central part of any computer. It acts as the “brain” of the computer
and as the name suggests, handles all the processing of the computer. This device
usually sits near the centre of the board. In Figure 3.1, the CPU is housed in
socket A. CPUs often come in different form factors and are designed to fit in

Figure 3.1. A labelled diagram of
a typical modern motherboard.

*Note that some components re-
quire a lot of power which also
draw power directly from the PSU
(Power Supply Unit) as well as
from the motherboard.
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different sockets, however, there is usually overlap between the same products
that a manufacturer produces.

Modern CPUs are often designed to be to processes multiple tasks at the
same time. For example, when you use your computer, there are usually multiple
programs all running at the same time, such as browsing the web, writing a
document and listening to musics. The way that CPUs used to handle doing
these tasks at the same time is by using a scheduler to switch between the tasks
so quickly that the user would not notice that they were not happening at the
same time. This is called concurrency, and it is the illusion of work being done
in parallel. However, modern CPUs have truly parallel capabilities since there
are multiple processing cores contained within the computer, that can all process
information in parallel.

C PU AMD Ryzen Threadripper 2950X 16-Core Processor

tlisa | ) 4.00 GHz
2% 3.93 GHz : ‘6
T 1
_ breads  Hand .
249 3837 101637 viuwe Enabled
i 1.5 M8
8.0 M8

0:00:51:50 ﬁ 20ms

If you look at Figure 3.2, you can see that this processor has 16 cores. This means
the entire CPU is made up of 16 processing units, that can individually work on

Figure 3.2. A screenshot of
Windows Task Manager, showing
the information about an AMD
Threadripper processor.
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a task. Task manager shows 32 ““logical processors”” on the computer, which may
be confusing at first. This is quite common for many higher-end chips. This is
known as Simultaneous Multithreading (SMT) or Hyperthreading>. SMT is
a special type of technology which increases the throughput of each individual
core, allowing an increased amount of parallel processing. Not all workloads can
benefit from this increased performance, but highly parallelised workloads may
see increased performance on these chips when using all the logical processors,
and not just each physical core.

Most modern CPUs also contains a small amount of very fast working memory
called the cache. The cache of a CPU is usually arranged in levels from 1 to 3, 1
being the fastest and closest to the processor and 3 being the slowest. These levels
are called L1, L2 and L3 cache. This cache is usually very small - the Threadripper
processor shown in Figure 3.2 has only 96 KB per core on my CPU. This is only
enough to store around 1500 64-bit floating point numbers. While that may seem
like a lot, compared to main memory, it is barely a rounding error. Despite this
very low capacity, it is essential for reaching optimal processing speeds, as it is
the fastest way to get information to the processor. Many workloads are often
bottlenecked by the amount of cache available on a given CPU.

3.1.3 Random Access Memory (RAM)

The RAM of a computer acts as the ““working memory’”” part of the computer. Any
information stored here is ““volatile’’, which means that its contents are erased
when the computer is powered off. It is usually many orders of magnitude faster
than permanent storage to both read and write to. It is located near the CPU,
in sockets G in Figure 3.1. As computing requirements have increased, the total
RAM is usually spread over multiple chips in multiple sockets. It should be noted
that the speed of RAM is usually much slower than the cache. We usually see
an inverse relationship between capacity and speed. In this case, RAM has more
capacity than CPU cache but at the cost of being much slower.

3.1.4 Physical Storage

A computer needs a place to store information long-term, such as the operating
system and user files permanently, even when the computer is turned off. As it is
not appropriate the store this in RAM, a separate device is needed. The traditional

2 The name when it is used in Intel
Chips
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medium for this storage is known as a Hard Disk Drive (HDD), and is made up
of a magnetic disk which physically spins. Seen in Figure 3.3, you can see that
this device looks a bit like an old-fashioned record player and works similarly.
The main disk spins and a head that can read and write rotates to find the desired
information.

HDDs are usually very high capacity, while an average desktop computer
today will have around 8 GB of RAM, the average hard drive starts at around 1
TB, almost 100 times the capacity. The storage on this drive, however, is very slow.
It is so slow that CPUs have dedicated hardware built in to communicate with
these devices asynchronously, so that the CPU can continue to do other things
while it waits for the information from the hard drive. As this module is about
optimisation, the main thing to remember that any communication with a hard
drive is very, very slow, and should only be done when necessary. This can be a
serious bottleneck of most poorly designed algorithms.

While HDDs were traditionally the main storage devices used, there has been a
huge uptake of a newer technology - Solid State Drives (SSDs). These new devices
have no spinning parts and consequently, draws far less power than the spinning
alternative. These devices also have a huge increase in speed, being anywhere
from 10 to 1000 times faster than spinning disks. However, the price is far higher
for the same capacity. The “Price Per GB” is usually at least 4 times higher for
SSDs than for spinning disk, however, the speed of the SSD is usually far higher.

Despite SSDs being much faster than HDDs, they are still incredibly slow next
to accessing RAM. Anything than can be loaded into RAM before processing is
usually better to do, than to load the information while you are processing it.

Figure 3.3. A spinning hard disk
drive.
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3.1.5 Graphical Processing Units (GPUs)

A GPU is a special type of co-processor3 that is primarily designed for graphical
workloads, such as, deciding which colour each pixel on your screen should be
in a given application. A GPU has its own set of fast memory, separate to main
memory. The traditional graphics workloads that a GPU was designed for is
massively parallel, but doing very similar things. This type of workflow is usually
called SIMD which stands for Single Instruction Multiple Data. As such, that
GPU usually has many thousands of small processors inside that can perform
the same instruction over many pieces of data at the same time. The programs
that run on each of these cores is usually called a kernel4.

More recently, many of these devices are referred to as GPGPU - General-
Purpose Graphics Processing Unit - as modern requirements usually have a lot of
SIMD workflows which are practical to run on a GPU. In general, the speed of an
individual processor inside a GPU is a lot slower and more restricted than a CPU,
however, the sheer number of these cores can make processing a huge quantity of
data much faster. You can imagine having 1 highly skilled worker that is 10 times
as efficient as one unskilled worker. Imagine that in total you have 1 highly skilled
worker and 100 unskilled workers. Provided that all workers, regardless of skills,
can do a task, if you have 100s of tasks to do, then it is often better to outsource to
the 100 workers, since they can work on the task individually, whereas the highly
skilled worker can only go through each task one by one. This means that GPUs
are usually only suitable for massively parallel tasks.

A GPU is connected to the computer via a PCle bus>. A program is executed
on the CPU first. If the program is designed to make use of a GPU, it must
communicate with the GPU. Any data that is required for a computation must
be copied from main memory to the dedicated GPU memory. A program which
executes on the GPU is called a kernel. These kernels are usually written in a
special language dependent on the manufacturer such as CUDA®.

The architecture of a GPU and the interaction with the CPU will be discussed
in more detail in a later section. But for now, remember that a GPU is a lot slower
than a CPU for a single task, the benefit only arises when you need to perform a
similar task across a huge set of data.

3 A co-processor is a device which
is able to perform computations
alongside the main processor,
which is usually specialised on
certain workloads.

4 The name - kernel - is shared with
many other distinct concepts in
Computer Science, so one should
pay attention to the context in
which it is used.

5 Peripheral Component Intercon-
nect Express - A connection stan-
dard used on the majority of mod-
ern systems to connect devices to
the motherboard, with direct com-
munication access to the CPU.

¢ Compute Unified Device Archi-
tecture - An NVIDIA proprietary
programming interface which pro-
vides a software layer to gain direct
access to the GPU'’s virtual instruc-
tion set.
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3.2 Introduction to Software

3.2.1  Operating Systems

Almost every modern computer system runs an operating system, which manages
computer hardware and software resources and provides common utilities to
software running on the system. There are 3 main types of operating system that
you will need to be aware of. Most desktop computers run Windows, which
is usually Windows 10, or more recently, Windows 11. A substantial part of
the market also uses macOS. Finally, a huge amount of the worlds computing
infrastructure runs on Linux”. You may have heard of some Linux distributions,
such as Debian, Fedora and Ubuntu. Most supercomputing clusters run on Linux,
commonly a version of Red Hat Enterprise Linux.

For us as researchers, it is important that our code can be run on multiple
different operating systems, as you will likely use your home machine (likely
Windows or macOS) to develop your code and then move to a Linux cluster to
run your code at scale. It is now easier than ever to write cross-platform code
which can execute on a wide variety of systems. This is why a lot of scientific
oriented code is written in C/C++ or Python, as there is much support across all
operating systems. Most major programming languages today will be able to run
on any platform. Julia is no different, and can run on most platforms.

Now we know what operating systems are out there, let us talk about what they
do for you. The Operating System handles the basic operations that programs
use regularly. They handle interacting with files on the permanent storage, they
handle the memory allocation in RAM and most importantly, they handle the
scheduler for the processor. An OS acts as an intermediary between the hardware
on a computer and the programs and applications themselves. Its role can be seen
in Figure 3.4.

An operating system is incredibly useful as it abstracts away the hardware
details and allows developers to deploy their application across a huge range of
computers, with high confidence that they will work.

Today, most languages provide abstracts to perform common tasks indepen-
dent of the specific operating system. For example, the os library in Python
provides functions for constructing file and folder paths, checking whether direc-
tories or files exist etc. These are functions typically handled by the OS directly,
but when using these abstractions, the same code can work on Linux, Windows

7 Linux is an open source project
which refers to a family of oper-
ating systems based on the Linux
Kernel. There is a related project
called OpenBSD which is also very
similar to a Linux based system.
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Operating system

Hardware

and macOS with no requirement to change it, despite the operating systems using
different formats for file paths.

3.2.2  Compilers and Machine Code

While modern architecture is built through abstraction, when it comes time for the
code to run, the hardware must eventually be able to execute the program. In order
for a program to be executed, it must be translated to machine code. Machine code
is made up of very simple, processor dependent instructions, which manipulate
data at the most atomic level, sometimes a single bit at a time. Machine code is
very difficult for humans to read and write, which is why we write source code
in a higher-level language. This higher level language is human-readable and is
the called the source code. Another piece of software is then required to take the
human-readable source code and translate it, sometimes through multiple layers
of abstraction, to eventually become machine code which is then executed on the
system.

There are many varied approaches to take source code and translate it into
machine code. Older languages tend to use a static compiler which translates the
entire set of source code into a binary® This method will need to be repeated on

Figure 3.4. Source: Wikipedia

8 An executable bundle of instruc-
tions, specific to the hardware ar-
chitecture and operating system it
will be executed on.
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each platform on which you wish to run this software. For this reason, languages
like Java or C# have taken the approach of creating an intermediate language
which is designed to be executed on a virtual machine. This allows the partially
compiled byte code (often called an Intermediate Language) which can be just-
in-time compiled into native code®. Languages like Python are usually executed
via the use of an interpreter which line-by-line translates the source code into
native code and executes this as it goes.

The process of translating source code into native code has a huge variety of
approaches, but eventually all source code needs to be translated into machine/-
native code to run on the hardware.

At this point, it is important to make the distinction between a programming
language and the toolchain used to execute code written in that language. A
language is just a standard set of definitions for how a piece of source code will
execute. However, for brevity, we often refer to a language and its most common
(and sometimes only) toolchain as a bundle. E.g. we say that C/C++ is a compiled
language, however, it is possible to write an implementation of a toolchain which
interprets C/C++ code instead of compiling it. In the case of Julia, the only real
implementation is using the LLVM compiler backend, and so when we refer
to Julia’s compilation processor, we are referring to the LLVM compiler. This is
similar for the vast majority of languages, however C/C++ or Fortran have a vast
array of different compilers as they have been around for a very long time. From
this point on, any reference to execution of C/C++ or Python etc assumes we are
using the most common toolchain for the language™.

For languages such as C/C++, this compilation happens ahead of time, before
the code is executed. This is what makes it a compiled language. The output of
the compilation is sometimes referred to as a binary. This refers to the nature
of machine code being written in binary. On Windows, this file has the .exe
extension.

For languages like Julia, things get a bit more complicated. It uses a Just-
Ahead-of-Time compilation model. This works by having a Julia runtime which
translates source code on the fly into machine code, just before it is needed. Once
the compilation happens once, it is stored (cached), which means the compilation
process can be skipped on the next execution. This allows the language to be very
dynamic and flexible, giving more expressive power to the developer at a small
cost of startup time™".

9 Native code is native to the ar-
chitecture of the machine running
the program. For example, using
x86 instructions on modern Intel
or AMD processors.

*° For Python, we refer to CPython.
For C/C++ we refer to the any
compiled toolchain, such as Clang
which uses LLVM to compile the
code much like Julia and also Rust

" There is much work being done
to be able to precompile code to re-
duce the startup time of the Julia
runtime. Currently, it is very dif-
ficult to statically compile a stan-
dalone binary, but packages such
as PackageCompiler.jl are mak-
ing huge progress. The main ben-
efits of more recent Julia version:

1 1 1.
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In general, most modern compilers are very smart, and are able to optimise
source code written to be as efficient as possible, with little input from the de-
veloper. Only recently has an attitude of ““trust the compiler”” become prevalent
in developers. Most of the time, the compiler has tricks to make the code fast,
and often times you can focus on writing clean code, without worrying too much
about optimisation. For example, if you are calculating a sum, which is known
at compile time, the compiler will often precalculate your value and not run the
calculating every time.

function my large sum()

S 0

for i=1:100000000000
S i

end

return s

end

Let’s take Algorithm 3.1 for example. When we run the method we get the
following;:

julia> import BenchmarkTools: @btime;
julia> @btime my large_sum()

2.063 ns (0 allocations: 0 bytes)
932356074711512064

This means it only took a couple of nanoseconds to calculate the answer. This
does not seem feasible since the function has to iterate through 10'! integer
additions. However, the compiler is very clever - it knows that this function only
operates on constant values, and so it can precalculate the output, removing the
need to make the calculation each time. The compiler collapsed all the code to
just return the result of the calculation, without having to go through the for loop
every time.

We can see that if the compiler has access to more information, such as a value
being constant, it can make sophisticated optimisations to avoid having to perform
certain calculations at runtime.

Julia’s compiler is called LLVM which is a very established and popular com-
piler. You can see the actual assembly code (analogous to machine code) produced
by this function:

Algorithm 3.1. A simple function
which performs 10! many addi-
tions.
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julia> @code llvm debuginfo=:none my large sum()
define i64 @julia my large sum 1682() #0 {
top:
ret i64 932356074711512064
}

This might be slightly difficult to read, but it is clear that there are no calcula-
tions happening here. The function simply returns the precomputed value.

This sort of behaviour is just one of the many compiler tricks that are used
to make your code faster. If you are every wondering what your code is do-
ing, then you can check various levels of output in the translation process to
see what is happening. Some helpful macros are @code typed, @code 11lvm and
@code native.

3.2.3 Threading and Multiprocessing

Modern CPUs have access to multiple cores. It is standard for most modern
desktop computers to have a CPU with at least 4 cores inside. High-Performance
Computing clusters are made up of a set of computing ““nodes’”” (a term for a
single machine in a cluster), which are networked together. Typically, each node
has 1 or 2 CPUs with anywhere from 20-128 cores each. It is important to know
how to harness the computing power of machines with multiple cores, as the
speed of individual cores is not really improving over time, and the only way to
access more compute is to scale horizontally.

There are many approaches to parallelism (on the CPU) which you will need to
understand. The first of which is called “‘multithreading”. A thread can be thought
of as a small unit of instructions which is part of an overall program/process. A
process can have multiple threads inside, which usually have access to shared
resources, such as memory. Different processes do not share these resources, such
as memory. What is important to understand is that different threads can execute
at the same time, and have access to the same data, so it is very important to make
sure that only one thread can access (read/write) to the same piece of data at any
one time.

Processes on the other hand, do not have access to shared memory resources,
and are isolated from one another. However, one can communicate information
between different processes via ports or pipes. You can think of these as a com-
munication channel between different workers. These are implemented in many

23
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ways, but it allows for a workload to split up across different processes. Since
these processes only need a communication channel to function, you can split up
the workload across multiple computers and scale up to use 1000s of computers
if needed.

Most programs often use threading as it is much simpler to use and implement,
and is very efficient for sharing resources across each thread. However, some
languages like Python have restrictions on which data can be accessed by which
thread, which makes threading in Python very slow. Instead, Python uses multi-
processing to split work across multiple different processes to gain a speed-up on
systems with multiple cores and parallel workloads.

3.2.4 Hardware Instructions

Some modern CPUs have built into them the ability to manipulate multiple pieces
of data at the same time, provided they are in a suitable format. Take the problem
of adding two vectors together.

=1
I

(31)

(3-2)

<y
I

| Y4 |
[x1+ 11
X2+ Y2
X3 +Y3
| X4 + Y4

=L

_l’_

<y
I

(3:3)

Notice that there are 4 add operations here, but they are all independent of
one another. Modern CPUs tend to have advanced instructions for doing this
operation all at once. It works by taking the 4 values from the first and second
vector all at the same time, and putting them in a special arithmetic unit on the
CPU which can add numbers in parallel. There are many implementations in
hardware, but the most common ones are AVX" and SSE'3. These specialised

?https://en.wikipedia.org/wi
ki/Advanced_Vector Extensions
B https://en.wikipedia.org/wi
ki/Streaming_SIMD_Extensions
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instructions are known as hardware SIMD (Single Instruction Multiple Data).
Let’s look at an example implementation of SIMD in Algorithm 3.2.

function custom sum(numbers)
total zero(eltype(numbers))
@inbounds for x in numbers
total X
end
return total
end
function custom_sum simd(numbers)
total zero(eltype(numbers))
@inbounds @simd for x in numbers
total X
end
return total
end

The @inbounds macro simply tells the compiler to ignore bounds checking
(making sure that you index into an array correctly). If we benchmark these
functions we see the following results:

julia> numbers rand(Float32, 256);

julia> @btime custom_sum($numbers)
162.618 ns (0 allocations: 0 bytes)

130.382460

julia> @btime custom sum_simd($numbers)
6.161 ns (0 allocations: 0 bytes)

130.38245f0

We can see that the SIMD version has a significant speed-up (around 18x
speedup), but requires very little effort on our part.

We can inspect the code produced, using the @code 11vmmacro. Consequently,
we will see some directives with < 8 x float >being produced. This shows that
8 32-bit floating point numbers are being loaded and processed in a single CPU
instruction. There are some other optimisations as well, such as using the ““fast”
math versions of the addition, but overall, the majority of the speed-up comes
from using the special instructions on the modern CPU. The hardware on the
processor allows for processing 256 bits of information at the same time*4. Since
we used 32 bit numbers, we were able to perform 8 simultaneous additions. If we

Algorithm 3.2. A simple example
of two implementations of a func-
tion which performs a sum over an
input array of elements.

4 Many modern CPUs, such as Ap-
ple’s M1 processor, supports AVX-
512 which allows processing on
twice the number of bits as my ma-
chine. This allows for huge accel-
eration in many computationally
intensive workloads
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were to use double precision floating point numbers (64 bits each) we could only
fit 4 numbers into the SIMD register.

It should be noted that not all operations are suitable for a SIMD speed-up and
this optimisation should only be considered for performance critical code.

We can compare the implementation to the built-in sum function to see that
our implementation is actually a lot faster:

julia> @btime custom sum_simd($numbers)
6.172 ns (0 allocations: 0 bytes)
130.38245f0
julia> @btime sum($numbers)
22.906 ns (0 allocations: 0 bytes)
130.38248f0

We can see that our implementation is even faster than the inbuilt sum function.
This is likely due to the sum function using a slower, but more accurate version
of the addition.

3.2.5 Data Types

We know that all information on a computer is stored as binary data, simply a
series of 1s and Os called bits. As all information is stored this way, it is essential
to be able to know what a set of these bits actually means. How does the computer
interpret this information and know exactly how to manipulate it? This is exactly
what a data type is (or rather a primitive data type) - a specification of how to
interpret the bits of some data. The operation for adding two integers is very
different from the operation of adding two floating point numbers. The type of
your data therefore determines which machine instruction needs to be executed.
This is essential information. If the code does not know the type of data ahead of
time, the processor must do some work to look up or determine the type which
specifies how to handle the bits of data. This can be incredibly slow and costly,
which is why later in the book, we will focus on giving the compiler information
about the types so that it can avoid these costly checks. For the rest of this chapter,
we will discuss the different common primitive data types which are common
to most programming languages. Modern CPUs have dedicated hardware and
instructions to process each of these types.
Unsigned Integers
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The most basic type of data is an integer. This has the same meaning as in
maths, where this represents a natural number. However, for efficiency, we break
up integers into different sizes depending on the expected range of values the
data will have to cover. In Julia, the unsigned integer types are
UInt8 # 8 bits used per number
UIntl6
UInt32

UInt64
UIntl28

We go up by double the number of bits each time. With 7 bits, you can store the
values from 0 to 2" — 1. As the range of numbers is limited, we must make sure
that the values to be stored in these variables will not exceed the maximum size. If
this happens, we get an overflow error which can cause logic errors in a program,
leading to incorrect results or even program crashes.

You may have released that a computer (or specifically its processor) is a 64
or 32 bit processor (most modern CPUs are 64 bits). This refers to the word size
of the registers and communication channels, or in other words, the width in
bits of how much the CPU can process/retrieve in one go. The default size of
variables usually depends on the word size of the CPU, which will be 64 bits on
most systems. If you were to specify the UInt type in your source code, this will
refer to UInt64 on a 64-bit machine and UInt32 on a 32-bit machine.

Signed Integers

In order to store negative integers, we need to alter our representation to allow
for negative numbers. One option is to designate the leading bit as a sign bit which
indicates a positive number when this bit is 0 and negative when it is 1. However,
this is not a very efficient approach. One of the most common approaches is to use
the twos compliment method. If we have an n-bit signed integer, then the leading
bit represents the value of —2"~1. Take a 4 bit number for example. Usually the
bit representation of 7 in binary is 0111as7 = 0 x 23 +1 x 22 + 1 x 2! + 1 x 205,
However, instead of the leading bit representing +8 (23), we represent it with —23.
This means that representing —7 becomes 1001. This method of representation
allows for easy expression of addition, despite the negative numbers.

If you find a bug in software, where a number that should always be positive
gets very large and then suddenly turns negative, this is because when the 1
gets carried to the leading bit position, the number suddenly becomes negative.
This is because the developer has used a signed integer instead of an unsigned

*5 Each of the columns in the binary
number represent 2* where x is the
index of the column starting from
0 on the right-hand side
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integer and also used a representation with too few bits to accurately represent
the variable.

As signed integer are the most common used, specifying Int in Julia refers to
a signed integer. Additionally, this will refer to a 64 bit integer on 64-bit systems
just like the signed integers in the previous section.

Boolean Values

Boolean values are simply true or false values. In most languages, this is repre-
sented as an 8-bit unsigned integer. This is because, on most systems, the smallest
block of memory which can be addressed is a single byte'®. We restrict these 8 bits
to be either all zeros (representing false) or a single 1 in the trailing bit position
to represent true. This is why often languages allow 1 and 0 to be interpreted
as true or false respectively. This is also why math with booleans make sense, as
true * 5==5and false * 5==0.

Note that storing an array of booleans will likely take up more memory than
you expect. In Julia, we can create an array of boolean values with
julia> bool vals Vector{Bool}(undef, 64);

julia> sizeof(bool vals) # Outputs number of bytes stored
64

Note that we have 64 bytes or 512 bits to store 64 boolean values, which is not
very efficient. This is why we can also use a BitVector which is designed for this
purpose, to allow us to use the minimum amount of memory required. The same
array, converted to a BitVector has a size of

julia> sizeof(BitVector(bool vals))
8

which gives 8 bytes and 64 bits, the expected amount.

Characters and Strings

Programs often need to be able to interpret text, which is usually stored as
an array of characters (often called chars). Traditionally we used ASCII to repre-
sent characters such as the alphabet (lower and upper case), punctuation and
numbers, along with a few other special characters. This used 8 bits per character
with a specific mapping from binary representation to character. For example,
the character ‘a” is represented by the number 97 or the binary representation
01100001. As the use of computers has grown, we have needed more and more
characters. Most encoding schemes now use UTF-8 (Unicode Transformation
Format) which allows for variable length encoding. Most text using the English

61 byte is equivalent to 8 bits.
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language will revert to using standard ASCII encoding, but less common charac-
ters may use multiple bytes to represent a single character. This allows for a great
deal of compression instead of extending each character to use 2 or even 4 bytes.
UTE-8 is capable of encoding all 1,112, 064 possible valid character codes in the
Unicode standard, including emojis!

A string is just a collection of characters, essentially like a special type of array.
Due to UTF-8 encoding, it is often difficult to index into a string the same way
one would index an array, since each character may use a variable number of
bytes. Fortunately, the low level details are usually abstracted away from the
programmer.

Floating Point Numbers

Floating point numbers are necessary to store real numbers, including those
with decimal values. While integer representations are not capable of storing
decimal values, a floating point number can handle this. Julia, like most other
programming languages, uses the IEEE Standard for Floating-Point Arithmetic
(IEEE 754-2008). This is made up of 3 parts, similar to standard form notation

1. The sign of the mantissa. The leading bit of the number represents the sign,
such that 0 is positive and 1 is negative.

2. The exponent. The next set of bits (8 for a single-precision (32 bit) float)
represents the size of the exponent. This includes positive and negative values.

3. The mantissa. This represents the significant digits of the number, which is
usually normalised. This has columns to represent values like a half, a quarter,
an eighth etc.

Overall, the number is calculated as x = s x m x 2°, where s = %1 is the sign,
m is the mantissa and e is the exponent. This is core to scientific computing as
this severely limits the accuracy of calculations using floating point values, and
we need to account for floating point behaviour. Note that we cannot represent
every real number, but only approximate it. For example, look at the result of the
following calculation:

julia> 0.1+0.2
0.30000000000000004

29
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This is obviously wrong. This is called a floating-point math error. The topic of
issues with floating point maths is very deep and nuanced, and we will discuss this
throughout the module. For simplicity, we should recognise that multiplication
is quite accurate, and even quite fast, whereas addition can lead to inaccuracies if
the values being added are of significantly different magnitudes.

Note that floating point numbers can cover a vast range of magnitudes. For ex-
ample, a 32 bit floating point number can represent values from 1.1754944 x 1038

t0 3.4028235 x 10%8, whereas a 64 bit floating number can go from 2.2250738585072014 x

1073% t0 1.7976931348623157 x 103%. On computers, you will often see numbers
written like 2.2¢12, one can interpret the e as ““times 10 to the ...”, so the number
becomes 2.2 x 1012

3.2.6  Memory Management

All programming languages need some mechanism to handle memory, as it is a
finite resource. There is a vast array of approaches to handle memory during the
execution of a program.

Older languages like C/C++ tend towards having manual memory manage-
ment - when you are done with using some memory, you must free it so that it
can be reused later. Failure to handle this properly causes memory leaks which
can fill up the computer’s memory and eventually cause the program, or the
computer, to crash. Manual freeing of memory is a technique that can be used for
optimisation, but is not as important as discussing the more common approach
taken by languages such as C#, Java or Python: Garbage Collection (GC).

Garbage collection works by having a separate process tag the parts of memory
that are no longer being used and assign them to be freed so that that memory can
be reused. This approach makes programming a lot easier for the developer and
helps to make programs more safe by virtually eliminating memory leak bugs'”.
There are lots of different ways in which garbage collection is implemented in all
of the different languages. As Julia is the focus of this book, we will give a brief
overview of the GC strategy:

e Objects that require GC management are “tagged”” with some additional infor-
mation for marking whether they need to be collected, and their “age”’.

o A sweep is conducted through the set of managed objects to see which can be
freed, marking them for collection.

7 These are still possible in some
languages even with a GC.
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e A heuristic is used to tune the amount of memory collected by the GC with the
aim of balancing the amount of memory allocated, and the amount collected.
The interval of time until the next collection is adjusted based on the amount
collected.

For this process to be safe and predictable, the memory must be frozen in place
to avoid errors. When the GC runs, all other execution is paused to ensure the
memory does not change during the GC sweep. As you can imagine, this has
a severe and adverse effect on the performance of your program if it spends a
lot of time trying to reclaim memory. If you are trying to allocate more memory,
once the program is almost full, this will cause a lot of what is known as GC
Pressure. This can cause a tremendous amount of slowdown in your program.
Some GC strategies cannot deal with a high amount of GC pressure, and tend to
fail, returning out-of-memory errors'S.

Obviously, having a GC can be a huge advantage, as it outsources part of
the programmers responsibilities. However, there are significant performance
implications of using this feature, and often, it is best to write your performance
intensive code without relying on the GC at all. This will be spoken about later in
the book, when we dive into practical optimisation strategies.

3.2.7 The Stack and the Heap

During the previous section, we spoke about ““allocating”” memory. What does
this mean? If we create a variable in our code, we must allocate some memory to
store the data for that variable. For example, take the following code:

X 5
X X 1

On the first line, we create a variable with the label' x and then store the integer
value of 5 here. There are a few things going on here. First of all, the syntax of
Julia abstracts away one detail, how did the program know how much memory
to allocate for the variable, as this happens first? Implicitly, we can infer the type
of the variable 5, and we know this is an integer (by default 64 bits), and so
we know how much memory to reserve for this variable. Since the variable x
is already assigned, on the next line, it is completely valid to write x=x+1, since
we are saying: Fetch the value from the memory which the variable x points to, add the
constant 1 to this value and then write the result back into the memory referenced by the

®Later, we will learn to use
CUDA.jl, which implements its
own custom GC for memory on
the GPU. This GC has huge issues
with GC pressure and can fail to
free memory fast enough, causing
crashes in your program.

19 Also known as an identifier.
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variable x. During this entire process, the source code made it clear exactly how
much memory was needed at each point, there were no guesses that need to be
made.

Take another example, take reading in a file from the disk:

words readlines("myfile.txt")

The computer has no way of knowing the contents of the file before execution.
Therefore, it does not know how much memory needs to be allocated ahead of
time.

These two different cases are handled by concepts known as the stack and the
heap. You may have heard of a stack before, as it is a well known data structure°.
A stack is a convenient way to organise information (such as the data in your
variables) by stacking them on top of each other. Adding an item to the stack is
called a push and taking an item off the top is called a pop*'. A nice feature of
the stack is that the information that is no longer needed can be popped from the
top, without the need to free up the memory. This amounts to simply changing a
pointer which points to the top of the stack, without having to clear the memory
used above. However, in order for this to be efficient, there are some restrictions
on what sort of objects can live on the stack. The most important restriction is that
you need to know the size of an object at compile time, or else it cannot live on the
stack. Additionally, there are some size restrictions on the stack as well. Objects
that are too large are often better left out of the stack as well. As we have already
seen with our example above, there are clearly common cases when knowing the
size an object ahead of time is not possible. For this reason, programs also tend to
use a heap.

A heap is a section of memory that can be used to store objects of variable sizes,
such as arrays. It is usually a lot larger than the stack in size. At the beginning of
a program’s lifecycle the heap is usually empty with no memory around. When a
request to store information on the heap comes, the program must search through
the memory to find a space large enough for the object to fit, which is not already
being used by another object. This is the process of “allocation”, finding a section
of the heap memory large enough for the object to be stored. Once this piece of
memory is allocated, it is marked as unavailable for future allocations until it
is freed. This is also what it means to “free”” memory, we are just marking it as
available for new allocations. Over time, this process tends towards fragmentation,
with small blocks of free memory dispersed between allocation blocks. If there

2 The “stack” in Stack Overflow
comes from this very data struc-
ture, and a common error that peo-
ple consider when incorrectly im-
plementing a recursive function.

> Another common operation is
called a peak which just looks at the
top of the stack without removing
it.
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are no contiguous blocks of memory big enough for a new object, the program
must de-fragment the heap to combine the smaller free chunks together and move
existing allocated chunks around to make space. These issues have performance
implications on your program. Sometimes you may need to think about this
process in order to optimise your program.

One important thing to remember is that the stack and the heap (and even
the machine instructions) are all stored in the same memory. This means the
stack and the heap have the same access speed and one is not inherently faster
than the other. However, we have gained a small insight into the additional
management of the heap, and how using it can lead to additional work for the
program, causing a slower performance. We have also gained an insight into what
exactly we mean when we say we are allocating memory - reserving space on the
heap for information. Even though storing data on the heap is technically also
allocating memory, this usually has no performance implications, and we often
do not refer to this process as allocation. For this reason, the term allocation should
be taken to mean heap allocation, at least in the context of this book.

Stack vs Heap example

Let’s take a simple function:

function simple(x)

X X 1
X X X
return Xx

end

Let’s walk through the steps of evaluating this for an input of 2:
1. Push the input argument onto the stack (Stack: [2])

2. Push the constant 1 onto the stack (Stack: [2,1])

3. Pop the top 2 items of the stack and add them together and push the result to
the stack (Stack: [3])

4. Peek the value of the top of the stack and push a copy onto the stack (Stack:
[3,3])

5. Pop the top 2 items and multiply them, pushing the result back onto the stack
(Stack: [9])

6. The return value is the last item on the stack.

33
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Stacks are useful because evaluating nested functions becomes very straightfor-
ward. This does not need to be done manually, as it is all handled by the compiler.

The aim of this example is to demonstrate that the very nature of the stack handles

the ““memory management’” itself.

On the other hand, take another function:

function simple heap(n::Int)

Y, rand(n)

S 0.0
for val in v
S S val
end
return s

end

This function takes in an integer variable n and creates an array v of random

numbers using another function. For now, we do not need to focus on the specifics

of this function call, but since n is not known at compile time, the array of random

values must be stored on the heap. Let’s see this process from start to finish using

an input of 4:

1.

2.

Push the value of the input argument onto the stack (Stack: [4])

Call the rand function with the item on the top of the stack. This creates a
pointer®* to the memory on the heap. (Stack: [p,])

Pop the stack and follow the pointer to the first value of the array in memory
and push this to the stack. Increment the pointer by 4 bytes and push this back
to the stack. (Stack: [vg, po +4])

Pop the pointer from the stack and extract the data there and push this to the

stack. Increment the pointer by another 4 bytes, and save in a CPU register.

(Stack: [vg, v1])

Pop the two top values and add them together and push the result to the top
of the stack.

Push the saved pointer to the stack. (Stack: [vg + v1, po + 8])

Repeat the process until you reach the last element in the array, which will
have the sum of all values in that variable. Do not push the last pointer variable
onto the stack.

2 A pointer is just a number which
specifies a single location in mem-
ory, like an address. An array
pointer points to the start of the ar-
ray only.
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8. The pointer p, is no longer referenced in any variables and therefore can be
marked for collection by a future GC sweep.

9. The final item in the stack is there return value of the function.

Note that this function has the side effect of leaving memory allocated. In a lan-
guage like C, this is usually when you would manually free the memory allocated
here. The majority of algorithms can be rewritten to avoid heap allocations or if
this is not possible, to only allocate memory once and then reuse this memory.
This minimises the number of heap allocated objects and relieves pressure on the
GC. This technique is known as preallocation and will be covered in more detail
later in the book.






4 Julia Fundamentals

There is no doubt that many people taking this course will ask the question - why
are we bothering to learn Julia? Before we dive into the fundamentals of this new
language, we will take some time to answer this question and, hopefully, convince
you that learning this new language is worthwhile.

4.1 Why Julia?

Learning a new language can often be daunting, especially for those who are only
just starting to learn programming. However, being able to quickly pick up a new
language is an essential skill for any aspiring professional who writes code on
a daily basis. Once you have experienced developing code in a few languages,
you will realise that most languages share a common heritage, and transitioning
between languages is relatively straightforward. While every language has its
own quirks and technicalities, often it takes less than an hour to begin writing
simple code, with the assistance of your favourite search engine of course. Julia,
in particular, was designed to be easy to understand and read and especially easy
to write.

In the most popular modern languages used in research (e.g. Python, MAT-
LAB, C/C++, C#, Java, JavaScript... etc), there are common patterns that are
shared, representing common operations and ideas with only minor differences
in syntax. One can think of syntax as a mix of the grammar and vocabulary of a
particular language. While some languages have notoriously high learning curves,
one should focus on the logic of a program, and not worry as much about the
syntax. Many research papers present their algorithms in the form of pseudocode,
which does not represent any actual programming language. Syntax is just an
implementation detail which often distract from the logic of the algorithm. This
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being said, to get something working, we have to address questions of syntax.
Thankfully, writing very simple programs can often be achieved by being able to
answer the following fundamental questions:

e How do you declare variables in language X?

e How do you write an if statement in language X?

How do you write a for loop in language X?

How do you write and call a function in language X?

e How do you write an executable program/script in language X?

These are often the fundamentals which you will want to pick up first when
writing code in a new language. Becoming proficient in the language will come
in time, through practice and exposure. Once you have put effort into learning a
second language, each additional language you learn takes less time and effort.
This allows you to be very flexible and have more options when choosing a tool
for each specific problem*

Before we specifically talk about using Julia, we should first consider what
options already exist now, some of which you may be using now.

4.1.1  Caveats for Language Comparisons

We should take pains to differentiate a language (and its syntax) from the imple-
mentation (what we will call the toolchain) that you use. Python, in particular,
has many different variants (PyPy, CPython, IronPython to name a few), each
with their own particular capabilities. While differentiating the language (syntax
& features) from the implementation is an important caveat, we can simplify
our discussions of comparisons to the most common toolchain. In particular, we
will be referencing the CPython implementation of Python here, as it is the most
common. When we discuss other languages like C/C++, we will assume one
is using the appropriate toolchain compilers for the job, whether it be vendor
specific (such as the Intel compilers) or a general compiler such as Clang. In Julia,
there is really only one implementation, using LLVM as the compiler, and so
when we refer to Julia, we do not mean only the language, but the entire toolchain,
including the compiler.

Further discussions of languages are assumed to include their most common
toolchain, to make easy and general comparisons between languages.

* For example, even though MAT-
LAB allows you to build GUISs, this
is often better left to more estab-
lished languages (and their frame-
works) like C#, Java or JavaScript.



4.1.2  Python

The first language, which is rapidly spreading throughout industry and academia
is Python. Python is an incredible tool, and certainly an asset if used correctly,
however, it has some major downsides which make it unsuitable for writing highly
optimised code.

Native Python code can be extremely slow?.

This is the first major downside of the language. Executing native Python code
is slow, being any from 10 — 1000 times slower than most other languages. The
way that the language gets around this problem is by using packages written
in other languages. For example, most of numpy is actually written in C, but
uses a Python wrapper3. This is because C code can be compiled into code that
runs quickly on the machine you are using. The speed-up from outsourcing the
processing only comes when you can batch enough processing to do in the other
language that the overhead of switching between the languages is negligible 4.
The massive success of Python for scientific computing comes down to the fact
that many necessary calculations can be efficiently batched so that Python need
only act as the glue, connecting various functions actually written in C.

However, what happens when you do not have the necessary functionality
already implemented in a fast Python package like numpy? There are a few choices
you have, such as using Just-In-Time compliation with numba or using jax at the
cost of learning a whole new style of coding. You can even learn C and create your
own package. However, these approaches are not perfect solutions and require a
significant time investment to get working. If, after finishing this course, you wish
to continue using Python, transferring the skills learn here can be done when
using the aforementioned tools to gain high performance.

The main reason why we have chosen Julia over Python (and the tools like
jax and numba) is because Python was not designed to be a high performance
language. It was designed in the days of single core processors, and when pro-
grammers would turn to languages like C or Fortran if they really wanted to write
fast code. It is only a somewhat recent development that Python has surged in
popularity in the numerical computing sphere, and so the language has ended up
being used in a way it was not purpose designed for. Where this is most clearly
apparent is the existence of the Global Interpreter Lock (GIL)5. This is a design
choice made to make sure that the code written is ““thread-safe”’. We will learn
later exactly what this means, but the main takeaway is that the programmer is
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> We are referring to the CPython
implementation.

3 A wrapper is a piece of code that
acts as an interface between the
user of the wrapper and some un-
derlying, more abstract code, such
as code written in a different lan-
guage.

4 Interestingly, this is where the
optimisation technique popular in
Python with numpy and MATLAB
is to vectorise your calculations, in-
stead of using a for loop. This just
means that you execute the for
loop in C instead of in the slower
language, with a few other optimi-
sations.

5Some Python implementations
do not have a GIL, but the main
one, CPython, does.
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severely limited when trying to scale their code to use multiple processors, and is
forced into using multiprocessing over multithreading®, or use a package which
uses a different language to allow for parallel processing. As progress in increas-
ing the single core performance of processors has been drastically slowed in the
last decade, one is almost forced into writing code that scales across multiple
cores to get increased performance on modern day problems. While it is certainly
possible to write parallel code in Python, it is a much less attractive choice.

4.1.3 MATLAB

MATLARB is both a language and a set of libraries and frameworks that provide
the majority of the building blocks needed for modern scientific computing. As
the name suggests, one of the early primary focuses of MATLAB was handling
matrix manipulations - i.e. providing fast linear algebra routines. There are many
additional frameworks such as Simulink used for model based design and other
engineering applications.

MATLAB also provides great plotting capabilities and is somewhat of an indus-
try standard for scientific computing. Until recently, all the numerical computing
taught at the University of Nottingham was in this MATLAB, being usurped by
Python in last few years.

While we do not go into much depth on the language, there are a few factors
which make it less attractive for use in this module. The most important of these is
the licence, which is proprietary. While most universities provide a licence to their
students, it provides too high a barrier for the aims of this module. Additionally,
the facilities for fine-grained optimisation and parallel/GPU computing are very
limited, especially when compared with Julia.

It should be noted that MATLAB had a huge influence on Julia, and if you are
familiar with the syntax of MATLAB, you will recognise much overlap when we
learn the Julia syntax.

4.1.4 C/C++ & Fortran

Traditionally, when people have realised that Python/MATLAB was too slow for
their needs, developers turned to languages like C/C++ or Fortran and their com-
pilers. However, as many people will tell you, these languages have an incredibly
high learning curve. They take a long time to develop the software and requires

¢ Each of these techniques are cov-
ered in detail in their own chapters
later in this book.



highly skilled developers to produce highly performance code. The main reason
for avoiding it in this course, is due to the difficultly of learning these languages
in a short time frame, the learning curve is far too steep”.

Hopefully these sections should hint at a common problem in numerical com-
puting, encapsulating what is known as the “two-language problem”. While,
for example, Python is easy to write and develop your code in, it is often far
too slow to be useful at scale. This often leads to researchers and developers
experimenting with their code in Python and use libraries like numpy to speed up
common tasks such as linear algebra. Depending on the application, there is often
a limit to how performant code written in Python can be, even when using highly
optimising libraries like numpy. This often results in researchers having to rewrite
the performance critical parts of their code in C/C++ or Fortran. Clearly, this is
a suboptimal setup. It should be possible to have a language that is flexible and
easy to learn and write, while also delivering the same performance as languages
like C/C++ and Fortran. The founders of the Julia language believed this to be
the case, and began about bringing such a language into existence.

4.1.5 Julia

Julia is a relatively recent language®, whose user-base has been growing exponen-
tially over the past few years. It was specifically designed to be an easy-to-use,
dynamic language, suitable for fast-paced research and development, while also
delivering performance comparable to traditional, statically-typed, languages
such as C/C++. There are numerous ways in which Julia achieves this, which
will be explored throughout our examples in the book. Most importantly, this is a
modern language, purpose designed for high performance scientific computing.

In technical terms, Julia is a “high-level, high performance, dynamic and Just-
in-Time compiled language”. It has a multi-paradigm approach whose main
features are multiple dispatch and procedural, functional, metaprogramming
and multistaged patterns. Since many readers will be unfamiliar with most of
these words, unless they come from a Computer Science background, we will
break down what each of these mean.

The first term, “high-level””, means that Julia has human-readable code. Specif-
ically, this means that the language requires some tools to convert the high level
source code into low level machine code before it can be actually executed. When
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7 Also, I do not know these lan-
guages well enough to teach them.

8 Recent when compared with lan-
guages discussed previously. Julia
has been around for over a decade
now.
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we talk about “high”” and “low”” level code, we are referring to how close the code
is to machine code, “low”” being the closest and “high” being the furthest away.

High performance is self-explanatory, however, dynamic is more nuanced.
Dynamic in the simplest sense, refers to the way that the way typing is handled in
the language. In Julia, one can reassign the type of a variable: for example, setting
a variable which stored an integer, to then storing a string. This is traditionally
disallowed in statically-typed languages like C/C++, which require the type
of variables to stay fixed (or static) during their lifetime. Additionally, statically
typed languages usually require that the types of all variables be known at compile
time. Python is also a dynamic language, which is why you almost never see
the types of a variable in the source code, because they can be reassigned to be
anything.

Just-in-Time refers to when the code is actually compiled. Julia compiles the
code when it is actually needed, which means the compiler can have a lot more
information about the code being run (such as the types of the variables being
passed into a function) and therefore can often perform more optimisations.
This also allows for code to be dynamically generated on the fly, which enables
metaprogramming.

Metaprogramming is when you have code which can write more code. In Julia,
this takes the form of writing macros, which allow you to write easy and flexible
code.

One can read more about the difference between procedural and functional
paradigms in other sources, but both have their advantages and disadvantages
and so having a language which allows for a mix of approaches gives one the
best of both worlds.

Finally, the poster child of Julia is multiple-dispatch, one of the core differen-
tiators against other languages. dispatch refers to choosing the specific implemen-
tation of a function 9. Multiple-dispatch is a feature which allows a funciton or
method to be dynamically dispatched to based on the run-time (dynamic) type of
more than one of its arguments. It is similar to the concept of polymorpism in other
languages, but a generalisation of it. In a nutshell, multiple-dispatch routes a call
to a function dynamically based on the characteristics of every input argument of
the function, allowing specialisation on every argument type. It is a topic which
will be covered in far more detail later on in this chapter, but it is essential to
understand to be able to understand code written in Julia, and it also holds the
key to the two-language problem.

9 Often called a method in the case
of Julia.



4.2 Basic Syntax

In order to read and write Julia, we first need to understand the syntax of the
language. For a comprehensive and well written guide to the design and syntax of
Julia, it is highly recommended that you read through the official Julia documen-
tation'. The official documentation is extremely high quality and comprehensive.
If you are serious about learning Julia, it is worth sitting down and reading/skim-
ming through the entire manual™. To make the transition from another language
very easy, the documentation also includes a section on noteworthy differences
from other languages?, which can help bootstrap your learning.

While the documentation linked above is definitely the recommended place to
learn the syntax of the language, we have included a distilled version of the key
points in the manual to help you get started.

4.2.1  Declaring variables

As in most languages, declaring a variable is simple:

a 0

This syntax creates a new variable, a, and assigns the value of 0 to it. Just like in
Python, one can reassign a variable to a different type:

a "Hello, World!'"

This is perfectly valid, but as we will discuss later, it is often a bad idea to re-assign
types.

Since this is a numerical computing module, we need to discuss how to declare
an array. Arrays are usually built using functions. Just like in Python’s numpy, we
usually use the zeros™3 function to create a new array:

arr zeros(10,10)

This creates a 10 by 10 array. By default, this function creates the array with the
type Float64 (on a 64-bit system). We can specifically tell the function which
type we want the elements of the array to be, with:

arr zeros(Inte4, 10, 10)

This makes sure each element is a 64-bit integer. As an additional note, arrays
use one-based indexing'# and to access the first element of an array one uses:
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" https://docs.julialang.org/

"https://docs. julialang.org
/en/vl/manual/getting-started
/

" https://docs . julialang.org
/en/vl/manual/noteworthy-diff
erences/

3 There are many, many, ways of
initialising an array, which will be
explored in examples later in this
book.

™ As Julia is a flexible language,
one can use array types with 0-
based indexing. As such, it is best
to write your functions to be in-
dependent of one-based vs zero-
based arrays, and so this point
should not affect the majority of the
code you write.


https://docs.julialang.org/
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arr[1]

Linear indexing like this will work, even for multidimensional arrays, since all ar-
rays are stored as a contiguous 1D vector in memory. Having multiple dimensions
is just syntax sugar. For our 10 x 10 example, the syntax arr[i, j] is exactly
equivalent to arr[i+j*10], as arrays in Julia are stored in column-major order.
This will be covered in more detail later.

4.2.2  If statements

An if statement controls the flow of your program and chooses which code will
be executed. This is sometimes referred to as a “conditional”. In Julia the syntax
is:

if statement

# execute code here if statement is evaluated as true
end

Here, we see the first major bit of difference between Julia and Python. Julia, like
MATLAB, requires the use of the end keyword to close all statements. A general
rule of thumb is that most statements that cause an increase in indentation, also
require an end keyword.
We can extend this to have a control flow with many options with an elseif
keyword. This comes in the form:
if statementl
# code here for statementl block
elseif statement2
# code here for statement2 block
else

# code if neither statementl or statement2 is true
end

What is special about this syntax is that it can short-circuit, which means that if
statementl is evaluated to be true, then the rest of the if-elseif-else block is not
evaluated. The else keyword will contain the code that is executed when all other
conditions in the block are evaluated as false.

One can combine multiple statements together on a single line by using either
an “and” operator or an “or”’ operator, in Julia these are written as && and
respectively. These are somewhat special and are lazy in their evaluation. Take
the following examples:



if statementl statement?2

# code if statementl and statement2 are both true
end
if statementl statement2

# code if either statementl or statement2 is true
end

In the “and”” example, if statement1 is false, then statement2 is not even eval-
uated since there is no point, as the combined statement will definitely be false
since both arguments need to be true in order to return true. In the “or”” example,
if statement1 is evaluated as true, then statement2 need not be evaluated, since
the combined statement is known to be true. This optimisation leads to a form of
syntax common throughout a lot of Julia source code in the wild, known again as
short-circuiting, which removes the need for explicit if statements in the code. The
syntax for this is:

statementl conditionalcode()

If statementl is true, then conditionalcode() is evaluated, otherwise it is not
even evaluated. This syntax is equivalent to the following:

if statementl
conditionalcode()
end

A similar thing can be done with the | | operator, but this is far less common.
This section would be slightly incomplete if we did not mention the ternary
operator. In order to describe this, let’s take a look at a common example:

# var is an existing variable
if statementl
var 1
else
var 0
end

This type of control flow is so common, that many languages implement syntax
for a ternary operator, which allows one to write this type of code on a single line.
The equivalent code using the ternary operator is this:

var statementl 1 0
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This is far more concise. The operator is ?, and evaluates the statement to the left
for truth, and if true, returns the value to the right of the operator. If false, then
the statement returns the final value, given after the colon®. This syntax also has
an advantage in that the variable var does not need to be declared before the if
statement to ensure that the value survives beyond the scope of the if statement.

Finally, we need to talk about the “not” operator which negates a statement.
This is given by !, in Julia. Take the following:

var (statementl) 0 1

This code is equivalent to the ternary example, since the two outputs have
switched place.

4.2.3 Loops
A for loop in Julia is very similar to Python and MATLAB, the syntax is:

for state in iterator
print(state)
end

Like before, one needs to use an end keyword to close out the for loop. What is
necessary to discuss is what form the iterator can take. In Julia, one can write a
very generic iterator (see the ‘Iterators’ section in the Julia documentation?®), but
there are a collection of useful iterators already implemented in the base library'7.
Before we talk about these utilities, we should cover the most basic iterator, the
array iterator. If we have an array, this acts as an iterator by default, as seen below:

arr = [3,2,1]

for a in arr

println(a)
end

What is more interesting is the following use case, which is very common, es-
pecially when doing a parameter search. Let’s say we want to have a nested for
loop, which prints out every combination of elements from two arrays. Take the
following;:

'5 Since colons are important to this
syntax, if you are using a range in
one of the return values, you must
wrap the value in brackets, to en-
sure it is evaluated first.

% https://docs. julialang.org
/en/vl/manual/interfaces/

7 https://docs. julialang.org
/en/vl/base/iterators/
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as [2,1]
bs [4,5]
for a in as
for b in bs
println("a: ", a, ", b:", b)
end
end

This syntax can get difficult to read very quickly, and what if the number of arrays
you want to iterate through is variable and can change? Clearly this requires a

smarter iterator. This is where the base libraries “Iterators” package comes in.

This defines the product function, which allows us to collapse a nested for loop
into a single loop:

using Base.Iterators

as [2, 1]

bs [4, 5]

for (a,b) in product(as, bs)
println("a: ", a, ", b:", b)

end

This code is equivalent to before, but is more readable and concise. The product
iterator works with any amount of inputs, so one should take the opportunity to
experiment with it in your console to understand how it works.

Another common situation is when you want to pair two arrays with the same
number of elements. Usually, the situation is as follows:

as [1,2,3]

bs [4,5,6]

S 0

for i in eachindex(as, bs)
S as[i]*bs[i]

end

This method requires manual indexing of the arrays. The eachindex method is
very powerful and makes sure that you can jointly index the arrays as and bs
properly and raises an error if the dimensions of the arrays do not match. The
traditional approach is to manually index the arrays, but this is discouraged as the
code will not work with arrays with non-standard indexing?®. Instead of indexing
the arrays, one can use the zip method. This works the same way as it does in
Python, and pairs each element from across multiple lists (arrays) as follows:
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8 While standard arrays in Julia
use 1-based indexing like MAT-
LAB, itis entirely possible to define
one’s own array type that uses arbi-
trary offset array indexing, so it is
recommended to write your code
generically to avoid preferring one
indexing scheme over another.
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for (a, b) in zip(as, bs)
s += a*b
end

This gives you the exact same code, but without needing to explicitly index either
of the arrays. But what if you still want the index? This is where the enumerate
method comes in. This, again, works the same way as in Python, by providing
the index along with the original state. An example is shown below:

as = [6.0,3.0,12.0]

for (i, a) in enumerate(as)

println("i: "
end

, i, ", a:

, a)

It is worth exploring the documentation to see the other methods that are built
into the Julia base library.

4.2.4  Writing Functions

A function can be written in many ways in Julia. The first way is writing a function
exactly how you would write down a mathematical function. Take for example:

julia> f(x)=2x"2+5x-10

f (generic function with 1 method)
julia> f(1.0)

-3.0

This function syntax is great for functions that can be expressed in a single
line. If your function needs to be spread across multiple lines, you can use the
function and end keywords to define the scope of your function:

julia> function f multiline(x)

a = 2*%x"2
b = 5x
c = -10

return a + b + ¢
end
f multiline (generic function with 1 method)
julia> f multiline(1.0)
-3.0
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Notice that the syntax starts with writing the function keyword, followed by
the name of the function, f_multiline, and then some parenthesis. Inside the
parenthesis we list the arguments that the function takes, these arguments are
named and should be separated by commas. A special type of argument, called a
keyword argument, can be written at the end of the set of normal arguments, but
separated by a ;, like below:
julia> function f_manyargs(x, y, z; kwargl, kwarg2)

return (x*y+z) * kwargl + kwarg2
end
f manyargs (generic function with 1 method)
julia> f manyargs(1.0, 2.0, 3.0; kwargl=5.0, kwarg2=-2.0)
23.0

What is important to remember when writing functions is scope. Scope defines
the “lifetime”” of the variables define within the current scope. As a general rule of
thumb, one can infer the scope via the current level of indentation. The parameters
declared in the function signature, only survive until the end of the function,
along with any local variables defined within. One can extend the lifetime by
mutating the state of the parameters passed in by reference, or by assigning them
to an outer scope by returning the parameters from the function.

What is special about Julia functions, is that you need not specify the return
keyword as one needs to in other languages. Take the following example:

function mutate_argument! (parameter)
parameter.state 0

nothing
end

This function mutates the variable parameter, and sets the state field to 0. The
final line of the function is just written as nothing and this will be returned when
the function is called. Notice the use of the ! at the end of the function name, this
is a convention to indicate the function will mutate the input argument (usually
only the first one).

4.3 Advanced Syntax

While it is possible to write even complex programs with the syntax discussed
previously, it can be very beneficial to invest in learning some more advanced
syntax to help write more general and effective code.
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4.3.1  Broadcasting

It is very common to want to apply an arbitrary operation to each element in an
array. This is known as a map operation, since we want to map an input to some
output. Take the following example:

numbers rand(100)
results similar(numbers)
for i 1:length(numbers)
results[i] sin(numbers[i])*numbers[i]
end

Here, we want to apply the same operation to each element of numbers and
store the result in another array called results. This operation can be simplified
in Julia to the following syntax:

numbers rand(100)
results sin. (numbers) .* numbers

This for loop can be expressed in a single line, and what is better, one does not
need to worry about preallocating an array and indexing the right location. Even
more impressive, is that Julia can fuse the broadcast operations together, which
allows the compiler to group these operations together to avoid having to store
intermediate results, which can use up a lot of memory™.

The way to apply broadcasting is to put a *“.”” before an operator, even an
arbitrary function. There are some macros to help as well, such as @ ., which will
take a normal statement which works for a scalar and add in the dot operator to
make the statement a broadcast instead.

4.3.2  Structs

It is often necessary to define your own types which combine more primitive
types together. This allows for the code to be readable. Take the example of a
complex number. Pretend for the moment that Julia does not provide a complex
number, let us see how we can write this part:

struct Complex
real
imag

end

9 This is one downside of using
numpy as this often allocates a lot
of intermediate arrays.
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One can then instantiate an instance of this object just by writing Complex (5.0,

An important point in Julia is that structs are immutable by default. This means
that after the instantiation, one cannot edit the components. One might think that
this makes structs useless, but operations that need to alter the inner values, can
instead return a new struct with the new values. This has a number of advantages,
but that is beyond the scope of this section. If you want to be able to mutate the
inner variables of a struct, you can declare the struct to be mutable, with the
mutable keyword:

mutable struct Complex
real
imag

end

One final point to mention here is that this struct has no type declarations, so
the real and imaginary parts can be any types. This is probably not what you
want for this, especially since you likely want the real and imaginary part to be of
the same underlying type. We can enforce this by specifying exact types:

struct Complex
real::Float64
imag::Float64
end

Once you learn more about Julia, you will see that this is not a good way to
write a struct. Mainly because this type is only useful if you want the inner values
to be 64-bit floating point numbers. What if you wanted these to be integers
instead? Or even 32-bit floating point numbers? This would require more types.
However, a better way to solve this problem is by using generic parameters. A
generic parameter acts as a placeholder for an input type, which is specified when
one instantiates an instance of the struct. The syntax for this is written as:

struct Complex{T}
real::T
imag::T

end

2200A8.should note that Complex
types are already provided in the
base implementation and this is
only for an example.
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If we create a variable Complex(1, 2), it will now be a different type to Complex(1.0,2.0),
but this enforces that both variables must be of the same type. This generic pa-
rameter specification adds some performance to our code that uses these complex
numbers, since the type of the inner elements is now mixed with the type of
the struct. In our example, the first variable will be of type Complex{Int64} and
the second will be of type Complex{Float64}. This means that if we pass these
objects into a function, the Just-in-Time compiler will know about the type of the
variables inside the parameter, and therefore, is able to write specialized machine
code, without needing to “box’’ the variables. Boxing will be described more at a
later time, when we talk about performance, but one can think of it as having to
check the type of a variable every time it is used, since the type specifies which
code is executed when the program runs.

As a final example, we can restrict the generic type of a parameter using the

operator which is the inheritance operator which evaluates whether a type is
equal to, or a subtype of another type. It is also used to restrict the types that are
allowed. If we only want Real numbers to be allowed as types in our complex
number, we can write:

struct Complex{T<:Real}
real::T
imag::T

end

These restrictions are not necessary, but they do restrict how your code can
be used. This often allows for errors to be thrown at compile time when you are
using types that you do not expect.

4.3.3 List Comprehensions

A feature which Julia inherited from Python is the list comprehension. This is a
very powerful syntax which makes defining a map and/or filter operation over
an array. For example, if we would like to create an array in which each element’s
value is equal to it’s index, then traditionally we would need to write:

n 10

numbers zeros(n)

for i 1:n
number[i] i

end



4.3. ADVANCED SYNTAX 53

Instead, we can write a list comprehension, which is much shorter:

numbers [i for i 1:10]

To break down the syntax here, we use the square brackets to specify an array
(or a list) to be created. Inside we can specify a loop via the for i = 1:10, and
then on the left-hand side of the for statement and after the opening square
bracket, one states the value of the element, dependent on the state of the loop, i.

One can also specify a filter condition, based on the loop by adding an if
statement to the end of the comprehension:

numbers [i for i 1:10 if i>5]

This will create a shorter list, only when the index is greater than 5.

The most important thing to remember about list comprehensions is that they
are just syntactic sugar for writing a very common type of operation. They do not
have the most readable syntax, and it might be beneficial to write out your code,
especially if the equivalent list comprehension is complex. One can equivalently
write the logic of a list comprehension without the use of one.

4.3.4 Lambda Functions

Lambda functions are also known in other languages as anonymous functions.
These are simply functions without an explicit name. The syntax uses the
notation, which signifies mapping from some input parameters to an output.
Take our previous example:

numbers filter(i->1i>5, collect(1:10))

This syntax creates a lambda function via the i->1i>5 syntax and then passes
this function to the filter function which is built into Julia. This syntax can be
read as i is mapped to i>5", which returns either true or false.

4.3.5 Closures & Functors

Building on lambda functions, a closure is a function which captures a variable
from the same scope as it was declared in. In Julia, and many other languages,
you can write a function inside another function and return it as an object®'. As
an example, let’s take an arbitrary example:

2 Functions are 1% class objects in
Julia.
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function add _n_fn(n)
function _add n(x)
return x+n
end
end
add 5 = add n_fn(5)
add 5(10) 15

Inside _add_n, we capture the local variable #, and use that value when _add_n is
called in the future. This is a method used to simplify the arguments of a function
call by capturing all the necessary inputs. However, this approach can cause
huge performance issues, as the types of the captured variables cannot always be
known. Additionally, there is some state associated with the function now, which
may lead to hard-to-detect race conditions.

An alternative to closures is writing an explicit functor, which is a struct like
object which acts like a function, with some state. Let’s re-write the previous
example using a functor:

struct AddNFn{T} Function
n::T

end

function (fn::AddNFn)(x)
return x fn.n

end

add 5 = AddNFn(5)

add 5(10) 15

Here, we say that the object AddNFn inherits from Function, and contains a
generically typed variable n. We also define calling that method by specifying
the type as the function-name, along with an identifier for the type so that we can
access its properties inside the function. This can be especially useful for writing
re-useable code, which is also very performant.

4.3.6  Modules

From what you have seen so far, Julia does not have any classes, or namespaces
and all functions are defined in the global scope. This seems very unmanageable?
How can Julia scale to large projects if the programmers don’t have the ability to
segment their code?
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The answer to this is Modules! Julia has a very simple syntax to encapsulate
a series of functions and variables inside a barrier, which can be used to divide
up sections of a code base, and allow massive amounts of code reuse without
clashing with other peoples code.

This section will not go over all the details, and if you are pursuing a larger
project, you are highly encouraged to read the documentation about how modules
work in Julia.

The basic syntax is as follows:

module MyModule

function myfunc(x)
println(x)
nothing

end

end # end MyModule

If one executes this in the Julia REPL, or includes the file in which it is de-
fined, they will have to specify the module name to access the myfunc function -
MyModule.myfunc("Hello, World").

One can even specify a module, within a module, known as a sub-module:

module MyModule

module SubA
function subafunc(x)
X*2
end
end

function myfunc(x)
println(x)
nothing

end

end # end MyModule

In order to access this new function, you simply write MyModule.SubA. subafunc(x).
Hopefully, you can see that this approach may lead you to write very verbose
code. The writers of Julia do not want this to happen. For this reason they have
supplied the export keyword, which lets a module expose some chosen functions
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as its public API, and when someone uses the module, the exported items get
put into the global (or current) scope.

We have seen this already, we have been using the @btime macro from Bench-
markTools.jl, and all we needed to do was include a using BenchmarkTools at the
top of the file/REPL. An example of how this works is below:

module MyModule
f(x) X

f2(x) X*X
f3(x) XFEXFX

export f2, f3

end # end MyModule

When users write using MyModule in their code, they will now have access to
the f2 and f3 functions without having to specify the module like before. Note
that we did not expose the f function, but one can still access this by specifying
the module - MyModule. f.

4.4 How does Julia work?

Now that we know more about the syntax of Julia, it is very important to have an
understanding of how the language works. This is especially important as there
are a few key differences to other languages that you will have seen before.

4.4.1  Running a program

Julia is designed around a REPL ** workflow. However, you can organise your code
into scripts and execute them via the command line using julia myscript.j1,
much like in Python. A REPL-based workflow allows you to keep the variables
and function definitions alive, even after multiple code changes. This is very
important in Julia, as it is Just-In-Time complied, and you have to pay a cost on the
first execution of a given function, or first import of a package. You do not want
to have to wait for re-compilation of functions which have not changed on every
iteration cycle. Packages like Revise.jl are frequently used to make this workflow
extremely streamlined. You may have seen a similar workflow using MATLAB,
or Python (with Spyder or Jupyter notebooks).

2 Read-Evaluate-Print-Loop
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One caveat that must be followed for beginners is that performance sensitive
code should only be executed inside of a function and not in global scope. For
example, if you want to sum up over an array (called arr) manually, you should
not write a script with

S zero(eltype(arr))
for a in arr

S a
end

You should put this code inside a function, and call the function:

function my_sum(arr)
s zero(eltype(arr))
for a in arr
S a
end
return s
end
s my sum(arr)

Additionally, notice how we pass in the arguments to the functions, instead of
using global variables? This is extremely important as global variables often have

severe performance implications, and are often very bad programming practices.

In general, running a Julia program just means opening up a REPL and typing
out some code. It is recommended to use the VS Code IDE to write out your scripts
and use the inbuilt tooling to “’send” your code to the REPL, or use something
like Revise.jl to automatically update the REPL with your script every time it is
saved.

Having a good workflow in Julia is crucial to having a good development
experience. This is often a pain-point for new (and even advanced) users, but
most of the issues have mitigations. However, there is no one workflow that works
well for everyone, and there are frequent changes and improvements being made
in the Julia ecosystem.

4.4.2  Type System

The first thing to go over is the type system. You will have heard a lot about types
in the first part of this book, and probably will have a much better understanding
of what a type is. This section is written to give you a deeper understanding of
types in general, and how the type system works in Julia.
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The first thing to note in Julia, is that while the language is dynamic (i.e you can
change the type of a variable during execution), the language still has a very strict
and robust type system. The dynamic typing of Julia allows the programmers to
be very flexible and fast when they write code, but the robust underlying type
system allows programmers to optimise their programs if they respect the type
system. The first question to ask is, how do types allow code to run faster?

This question has a very practical answer. In your computer, every piece of
data has to be stored in binary format in memory. This means that every integer
has to be represented in binary bits, usually with a fixed amount of bits per
number. Integers are rather simple as the bit storage for an integer is usually
equivalent to how you would write the integer in binary, except for negative
numbers which use a two’s compliment®3 format. Floating point numbers (real
numbers) are usually representing in binary standard form. There are many
choices on how to represent these numbers, but they are all usually based on
the IEEE 754 standard ?4. Clearly, operating on a completely different set of bits
for integers and floating points mean that one requires different operations (and
literally different sets of hardware on your CPU) to efficently process them. This
means that at some level on your computer, it has to know what type a variable
is, in order to know how to manipulate the bits. If the programming language is
dynamic, and the code does not know what type a variable is, it must at some
point, find out. This check is often very expensive. If one of your variables is
boxed (i.e. the type information of the underlying data is unknown or obscured)
then the computer must put in effort to ““unbox” the variable and process it in
the correct way.

If we move away from machine types for a second, we can use type information
to also select the most efficient algorithm for a certain problem. Take a function
such as sum:

function sum(arr)
S zero(eltype(arr))
for x in arr
s X
end
return s
end

In this implementation, we have made sure that s is the same type as the elements
of the input array to stop any type instability®5. While this implementation is

3 In two’s compliment, the leading
bit is used the represent the neg-
ative of its unsigned counterpart.
For example, representing a num-
ber with 8 bits has a leading bit
representing 27, but we can change
this to represent —27 to be able
to store negative numbers, which
turns out to be a very efficient way
of allowing negative numbers

24 https://en.wikipedia.org/wi
ki/IEEE 754

5 Type instability means that the
compiler cannot predict the types
within a function, and is usually
the most common cause of perfor-
mance loss in Julia. One can de-
tect type instability by using the
@code warntype macro.
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very general, suppose for a minute that we have a sparse array with the following
implementation:

struct SparseArray{T}
elements: :Vector{T}
indices: :Vector{Int}
end

Since this is a sparse array, we can implement a more efficient form of the sum

function2®:

function sum(arr::SparseArray{T}) where T
S zero(T)
for x in arr.elements
S X
end
return s
end

This will save on a lot of computation, as one does not need to loop through all
the zeros.

Now we know why types are important, we should gain an understanding of
how they work in Julia. We can start this by realising that there are two types of
types: concrete and abstract. All variables in Julia have a concrete type to represent
them. A concrete type has a specific representation of data. All machine types,
such as Float64 and Int64, are concrete types. Our example of the SparseArray
is also a concrete type. An instance of an object in Julia is always a concrete type,
as it has some definite memory layout. A concrete type is at the very bottom of
a type-hierarchy, as a concrete type cannot be inherited from. Julia avoids most
of the issues with inheritance by not allowing actual implemented types to be
inherited from.

However, some aspects of inheritance are very useful, and help to reuse code
throughout the code base. So Julia provides the abstract type. An abstract type
is only a name, and holds no actual data. Abstract types exist only to define the
behaviour of a type - not the implementation! Abstract types provide the bulk
of the structure to a type-hierarchy, and allow for massive reuse of code, while
providing structure and grouping similar types together.

One should remember that the type hierarchy and inheritance system is all
about inheriting behaviour and not about inheriting implementation details. In
practice, the type system is used to guide and direct multiple-dispatch to choose

*#This implementation uses
generic type parameters and
captures them in the constant T
which can be used in the source
code of the function.
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the most specific method implementation. The power of the type system comes
in restricting the types that are allowed in your method implementations. If you
are familiar with a language like C#, an abstract type should remind you of an
“interface”.

4.4.3 Number type hierarchy

Let’s take a look at how the different number types are organised together in Julia
using abstract types. To define an abstract type, we write the following:

abstract type Number end

Implicitly, this type inherits from the supertype Any, as all other types inherit
from, and so we do not need to write this in.

Imagine we want to distinguish between real and complex numbers, we can
define two abstract types for each different behaviour. However, these two types
of numbers share a lot of behaviour and are both numbers, and hence they
should inherit from the Number abstract type. We define this relationship using
the operator <: which can be read as is a subtype of :

abstract type Real Number end
abstract type Complex Number end

We can also use <: as an operator to evaluate whether a type inherits from another

type:

julia> Real Number

true

julia> Complex Number
true

julia> Complex Real
false

Note that Julia only has single inheritance and so each type can only have a
single parent, but an abstract type can have many children. This is not as limiting
as it can be in other languages, due to the multiple dispatch system described
later in this chapter.

The type hierarchy ends at the concrete types which can inherit from an ab-
stract type. A concrete type is either a composite type, known as a struct, or a
primitive type. For example, if we have a AbstractFloat type, we can define a
32 bit integer using
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primitive type Float32 AbstractFloat 32 end

where the second number 32 defines the number of bits required to store the type.
It is not very common to declare one’s own primitive types, but Julia gives you
the option.

4.4.4  Multiple-Dispatch

The choice of which method (function implementation) to execute when a func-
tion is applied to a set of arguments is called dispatch. Since Julia allows this
choice to depend on all of the input arguments, we call this process multiple
dispatch. Most of the languages you have likely encountered in the past have
single dispatch, which means that the choice of implementation depends only on
the first argument *7. Some languages have function overloading (also called
polymorphism), but multiple dispatch is a generalisation of this technique. In
these languages, the functions are tightly coupled to their first argument. This
does have many advantages, particularly when filtering the list of available meth-
ods for an object, but is an arbitrary distinction, which does not often make sense
in mathematical code as the implementation usually depends on the types of all
the input arguments>25.

The Julia runtime selects which implementation of the function to execute,
depending on the types of the input arguments of the function, and compiles
code for the concrete types passed into the function. That is all it is, a way of
deciding which implementation of a function to execute.

Take our example in the type section about the sum, with the sparse array:

function sum(arr::AbstractArray)
S zero(eltype(arr))
for x in arr
s X
end
return s
end

function sum(arr::SparseArray{T}) where T
S zero(T)
for x in arr.elements
s X
end

*’ The first argument is usually
the object itself, think of self in
Python, where you find the func-
tion you wish to execute by using
self.function().

2 Think of the addition operation
- the function only makes sense
when considering the input types
of both arguments equally.
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return s
end

Here, we have two implementations for a given function. In the first example,
any variable that inherits from the AbstractArray abstract type should be able to
be passed into the first sum function. This provides a fallback implementation, so
that most code can be executed. However, we can specify a more specific type (a
concrete type in this case, which is the most specific possible type), which allows
for a more optimal implementation. If we were to call the function via sum(array),
Julia chooses a different implementation, depending on the actual type of array.
The Julia runtime attempts to pick the most specific implementation possible,
which matches the type of input. If no functions are found with a matching type
implementation, then an error is thrown.

The rules are slightly more complicated when a function has many parameters,
there are rules to decide on which function is the ““most specific”’ in those cases®9.
In general, ““more specific”” equates to “further down the type hierarchy””. The
most specific implementations specify concrete type arguments.

This method specialisation allows us to extend our code to more specific use
cases without modifying the original source code. The only thing that changes is
the type of the input arguments. One will find that an extremely large amount
of packages through the Julia ecosystem are compatible with one another, de-
spite having no ““glue” code written to allow these packages to communicate.
Additionally, it is incredibly easy to extend the functionality of a given package
(or the Julia base libraries themselves) by defining your own types. This really
captures the O from the SOLID design principles3° which states that code should
be “Open for extension, but closed for modification”.

4.5 Package Management

Almost all research nowadays will rely on using other people’s code, outside the
base libraries provided by the language you are using. The code you use will
often come in the form of packages (such as numpy in Python), which are fluid
projects which get updated over time. It is important to be able to specify which
packages you have used to develop a certain piece of code so that other people
can easily run the code with the same packages and reproduce your results. This

29 These rules can be found in the
documentation - https://docs. j
ulialang.org/en/v1l/manual/met
hods/

3° A set of principles for profes-
sional software developers to help
write clear and maintainable code,
introduced by Robert Martin (also
known as Uncle Bob).
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is also helpful for revisiting an old piece of code you have written which should
still work, even years after it was written.

To ensure reproducibility of your code over time, and to make sure that anyone
can run your code in the same way without any trouble, it is important to keep
track of the external dependencies of your code. In Python, you may be familiar
with a requirements. txt file which lists the packages required and (optionally)
the version number requires. Certain features of packages are only available in
later versions of the package, or some functionality may be changed or removed
in future versions, restricting the number of compatible versions of the project.
Julia has a build in system for managing the packages required for a given project
which we call an environment.

Environments are reminiscent of conda environments, used to isolate the pack-
ages installed for different projects in Python. In Julia, these environments are far
more lightweight and are specified in a single text file called Project.toml. This
is managed by the built-in package manager which can be accessed via the Julia
REPL. A folder containing a Project.toml file is an environment. This environ-
ment lists all the packages required to run code within the project contained in
the folder.

Environments are essential for producing reproduceable projects, and ensuring
that anyone can run your code. It is highly discouraged to install all the packages
you use in your default environment and reuse these packages between projects
as this becomes incredibly cluttered and can lead to severe compatibility issues3'.
Instead, it is recommended to start each new environment with a clean start, with
no existing packages and only add what you need and what is used. If a package
is no longer used, it should be removed from the environment.

4.5.1  Creating an environment

In order to create an environment, open up the terminal in the root directory of
your project and start the Julia REPL using the julia command.

Once the terminal is open, you can press the ““close square-bracket key”,
to open the package management interface3>. From here, you can activate the
environment of the current folder by typing

] activate .

3 There are a few packages like Re-
vise.jl or BenchmarkTools.jl which
are often installed in the global
environment since they only af-
fect REPL usage and code devel-
opment and are often not used in
any source code.

32 Pressing the backspace key will
go back to the normal REPL. You
can also access the shell with the
; key, but this does not work very
well on Windows.
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where the . symbolises the current folder. Activating an environment directs the
package manager to the correct location of the Project.toml file. Once activated,
you should see the name of the folder show up in parentheses on the left of
the cursor. From here, you can add a package by typing add PackageName. For
example, the package Plots.jl can be added using

] add Plots

Notice that the . j1 extension is left off. The package manager has access to a
registry of all public Julia packages which is used to find the right dependency to
be added to your project. Even unregistered packages can be added if you have
them in a folder, in which case you use the path to the folder, or in a GitHub
repository.

Once the package is added, it will usually do some precompilation to help
speed-up usage later. This process may take a while, but can be sped up by starting
Julia with more threads (discussed in the workshops). After precompilation has
finished, you can use the package:

using Plots
plot(rand(10))

If you type this into the REPL, you should see line plot with random data show
up.

4.5.2 Installing packages

If you have downloaded someone else’s project repository and you want to install
the packages, you can simply open the REPL in the folder of the project and
make sure it is activated. You can do this in one go by using the command
julia --project which opens the REPL in the current folder and activates the
environment in that folder.

Once activated, type instantiate into the package manager console:

] instantiate

This will start downloading and installing all the packages listed in the environ-
ment. Sometimes, you will also want to use the command resolve.
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4.5.3 Removing packages

You can remove a package by entering the package manager console of the REPL
and using the command rm, which stands for remove:

] rm Plots

4.5.4 Getting help

Typing in the command help to the package manager console in the REPL will
show you a list of commands which are useful for managing your environment.






5 Measuring Performance

If we are going to learn about optimisation, we need to understand how to quantify
the performance of our algorithms. All resources in a computer system are finite,
but the ones that we usually care most about are fime and memory*. Here, we will
discuss various approaches of quantifying how many resources are required to
perform a specific task.

As a general rule of thumb in Julia, one should only ever benchmark/profile
code within a function, and not executed at global scope, this will give the most
accurate results. This is inline with the performance tips of the language where
all time sensitive code is put inside a function.

Measuring the runtime of a program can be done a few different ways. Here,
we will talk about timing, benchmarking and profiling which are slightly different
approaches to quantify the performance of an algorithm.

5.1 Timing

We can start with the most basic form of measuring performance: timing how
long the code takes to run. Modern computers have internal clocks to keep track
of time. This is often referring to as measure the wall-time of an algorithm. These
clocks are usually accurate on the scale of nanoseconds. This is because the CPU
has to synchronise its behaviour very precisely. We can take advantage of this
built-in feature and measure the current time before a piece of code has executed,
and after it has finished. Taking the difference of these measurements will give
you the elapsed time of the function.

Let’s write an example in Julia. Take the example of creating a 1000 by 1000
array of random numbers. We can do this with the rand (1000, 1000) function
call. We are not interested in the result of this function, but rather the time it takes

1 For some cases, there are other
concerns such as energy usage,
storage requires etc.
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to run this code. In Julia, there exists the @time macro, which measures the time
taken for given code to execute®. Let’s run this code multiple times and see what
the results give.

julia> @time rand(1000,1000);

0.015791 seconds (2 allocations: 7.629 MiB)
julia> @time rand(1000,1000);

0.015770 seconds (2 allocations: 7.629 MiB)
julia> @time rand(1000,1000);

0.002748 seconds (2 allocations: 7.629 MiB)
julia> @time rand(1000,1000);

0.002724 seconds (2 allocations: 7.629 MiB)

Notice that the time taken is different on each execution, even though the
piece of code is the same. This is where we encounter the first issue of timing
- the execution time cannot be guaranteed to be consistent between runs. This
is because a modern computer is a complex machine, which is usually running
the operating system and multiple applications at the same time. The operating
system controls a scheduler, which tells the CPU which bit of code to run at any
time. What is important here is that a program can be interrupted (the execution
is paused), while the CPU switches to process a different task. This can cause the
same piece of code to have different measured times as seen above.

Another reason for the discrepancy is that modern CPUs dynamically adjust

the speed at which they operate, especially on devices such as laptops and phones.

This is because running at 100% speed uses a lot of power, even when the CPU is
idle. The CPU will try and operate at full speed when it is required, and switch
back to a low power mode when the performance is not needed.

This method of timing is also unsuitable in Julia as the language is Just-in-Time
compiled, which means that the first call to a function will include some additional
compilation time. This should only happen on the first call, and subsequent calls
will be much faster. However, it is strongly discouraged to time your code using
this primitive method, and instead, benchmark the function - this is the topic of
the next section.

5.2 Benchmarking

If the changes in measurement are only small fluctuations, we can average over a
number of repeats to get a better idea of how long the code takes to run. This is

20One can also use the @elapsed
macro to store the execution time
(in seconds) of some code which
can be used to plot a graph
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where the idea of benchmarking comes in. Benchmarking can be thought of as a
more systematic approach to timing a piece of code. In Julia, benchmarking can
be handled by a package called BenchmarkTools.jl, which will be used frequently
throughout this book. Just like the @t ime macro from before, this package provides
a few more macros which are used to systematically time a piece of code. Let’s
apply the @benchmark macro to our rand function:

julia> import BenchmarkTools: @benchmark

julia> @benchmark rand(1000,1000)
BenchmarkTools.Trial: 2555 samples with 1 evaluation.

Range (min .. max): 898.646 us .. 20.912 ms ' GC (min .. max): 0.00% 0.00%
Time (median): 910.509 us GC (median): 0.00%

Time (mean * 0): 1.951 ms £+ 3.459 ms ' GC (mean + o0): 4.82% + 12.29%
[

L. - -

899 us Histogram: frequency by time 13.9 ms <

Memory estimate: 7.63 MiB, allocs estimate: 2.

This outputs a much more comprehensive breakdown of the performance
of the rand function. One can see that this benchmark yielded a huge range of
results. Notice that this benchmark also talks about memory and allocation data
which is usually highly correlated with the execution speed of a function, which
is discussed in more detail later in the chapter.

Why are some executions of this function so much faster than what we have
seen before? To answer this, we must remember that Julia is a “Just-in-Time”
compiled language. This means that when Julia executes a piece of code for the
first time, it has to compile it into something the computer can process. Most of
the in-built timing methods in Julia also include this compilation time. This is
the main reasons for using the external package, as it will screen out the compile
time and only show you the results that are important.

Why are some executions of this function so much faster than what we have
seen before? To answer this, we must remember that Julia is a “Just-in-Time”
compiled language. This means that when Julia executes a piece of code for the
first time, it has to compile it into something the computer can process. Most of
the in-built timing methods in Julia also include this compilation time. This is the
main reason for using the external package, as it will screen out the compile time
and only show you the results that are important.

Usually, one favours the @btime macro over the @benchmark since it gives a
much more succinct output:
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julia> import BenchmarkTools: @btime
julia> @btime rand(1000,1000);
904.087 us (2 allocations: 7.63 MiB)

Note: This macro will return the minimum time taken over a set of evaluations.
This can give misleading results for code that may be intermittently slowed down,
such as code with heavy amounts of allocations. Specifically, for code with a high
number of allocations, it is often better to look at the histogram of results from a
full @benchmark. If you are embedding the function you have benchmarked with
@btime inside a loop, calling it N times, you may expect the result to take N times
longer than the number given you by @btime, but this is often an underestimate.
This is also key when comparing two implementations, as it is often important to
compare the averages and not just the best case scenario.

All timings are usually given with an SI prefix, such as n, u or m to indicate
nano, micro or milli respectively. Remember, these stand for 102,10 and 103
respectively.

If you want to be able to time a function and store the result in a variable, you
can use the @belapsed macro to simply return the timing, aggregated (via the
minimum) over many samples. If you need more precise control over how the
benchmark is run, you should consult the documentation for BenchmarkTools.jl.

One very important factor when benchmarking using the macros from Bench-
markTools.jl, is to ensure that you are properly interpolating variables. There are
usually allocations when using variables to call the functions, as these are often
global variables, which are heap allocated. Let’s take a look at an example:
julia> my arr = rand(1024);
julia> @benchmark sum(my arr)

BenchmarkTools.Trial: 10000 samples with 976 evaluations.
Range (min .. max): 68.184 ns .. 9.004 pus

Time (median): 74.888 ns GC (median): 0.00%

Time (mean % 0): 75.344 ns + 89.354 ns | GC (mean = o): 1.18% %
il

_.L_—_— -

68.2 ns Histogram: frequency by time 82.7 ns <

Memory estimate: 16 bytes, allocs estimate: 1.

Here, we have an allocation of just 16 bytes, but it does exist. We don’t expect
this sum to allocate at all. The reason for this, is using the global variable to pass
into our function. Instead of using this global variable, we should interpolate the
contents inside the benchmark:

GC (min .. max): 0.00% .. 98.88%



julia> @benchmark sum($my arr)

BenchmarkTools.Trial: 10000 samples with 987 evaluations.
Range (min .. max): 49.172 ns .. 98.589 ns . GC (min .. max): 0.00%
Time (median): 51.405 ns i GC (median): 0.00%
Time (mean + 6): 51.660 ns = 1.374 ns | GC (mean + o): 0.00%
il
R -
49.2 ns Histogram: frequency by time 57.1 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

Notice that this removed the mysterious allocation, while also seemingly improv-
ing the performance. It is critical that when passing in arguments to a function
to be benchmarked via BenchmarkTools.jl, you must interpolate the values being
passed into the function. Similarly, if you want to avoid creating a temporary
variable, but do not want to benchmark its creation, you can interpolate:

julia> @benchmark sum($(rand(1024)))

BenchmarkTools.Trial: 10000 samples with 987 evaluations.
Range (min .. max): 49.558 ns .. 122.961 ns | GC (min .. max): 0.00%
Time (median): 51.395 ns i GC (median): 0.00%
Time (mean % o0): 51.656 ns + 1.506 ns | GC (mean % o): 0.00%
i
—— W -
49.6 ns Histogram: frequency by time 57 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

Interpolation is key to accurate benchmarking using the macros. There are
many options to expand on this capability, such as setup arguments, which may
be of interest to low level benchmarking.

5.3 Profiling

Let’s say you have a more complicated piece of code that you are trying to optimise.
Many functions are very complex and call other nested functions, and it would be
tedious to try and benchmark each individual line of code in this algorithm, and
maybe that’s not even possible, since you are using some else’s code and cannot
edit their source code directly. What can you do?

This is where profiling comes into play. Profiling can allow you to diagnose
poor performing parts of your code base. It does this by running your program

as normal and inspecting which parts of the code get called and for how long.
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There are many implementations for achieving this, but we will only talk about
statistical profilers.

A statistical profiler works by frequently asking the operating system which
part of the program is running at any different time. This is used to build up a
picture of which part of the code is being executed for the longest amount of time
during the lifetime of the program. This method can be very good as it allows
the code to run at close to full speed while the profile is being collected. The
downside is that this method is often prone to numerical errors and mistakes
and is often unsuitable for some tasks. This is the main way that Julia allows for
profiling in the language. The built-in library Profile.jl contains tools for profiling
your code and the external package PProf.jl contains tools to let you visualise the
profile results. An example of using these tools to diagnose memory allocations is
provided in the next section, but applies to testing speed by removing the Allocs
submodule from each of the commands.

A profiler is quite good at identifying the relatively slow parts of your code. If
you have a block of code that takes 95% of the execution time, it is worth focusing
on that block instead of any code in the other 5%. This is important to recognise,
since profiling can be very informative, often times independent of the hardware
the program is being run on. This approach will be used frequently to identify
slow running parts of your code. Often times, most programs have a hot loop,
which repeatedly executes code many times. It is often work identifying this hot
loop and optimising the inner function before anything else.

5.4 Memory Usage

All resources on a computer are usually finite. The resource which is usually
considered first is time. How long will it take to run a certain piece of code? An
equally important question is “how much memory will this algorithm use?””.
Memory is also a finite resource and a developer should be considerate of the
memory footprint his code has. Similar tools to what we have already discussed
can be repurposed to measure how much memory has been used.

In Section 3.2.7, we spoke about the stack and the heap. Here, it is important
to distinguish between them during profiling. The stack tends to be a lot smaller
than the heap, and one should avoid allocating large objects on the stack. Often
this can lead to crashes or poor performance. In the profiling techniques we have
discussed, you will have seen that these techniques also measure the number



of allocations, which refers to allocations on the heap. Additionally, most of the
timing includes an estimate of the GC 3 time spent trying to the clean-up the
memory allocated by the function.

Let’s take a look at profiling the function given:

julia> function mem_func(n, pow)

arr = rand(n)
s =0
for x in arr
S += X © pow
end

end
mem_func (generic function with 1 method)
julia> n 1024;
julia> pow = 3;
julia> @btime mem_func($n, $pow);
2.496 ps (1 allocation: 8.12 KiB)

Notice that we are interpolating the variables n and pow by using the $ charac-
ter. This should always be done to accurately benchmark a function with input
arguments which come from variables. Secondly, notice that the output of this
benchmark specifies that there was one allocation with a total of 8.12 KiB (which
is 1024 x 8 = 8192 bytes). However, it does not tell us where the allocation is.
For our function, it is easy to see that creating the array caused the allocation,
however, in some code addressing where this comes from can be a challenge.

Julia v1.8 introduced an allocation profiler which allows you to profile your
code and visually inspect where allocations are coming from. This new func-
tionality is covered and demonstrated in a great talk from JuliaCon 2022 called
“Hunting down allocations with Julia 1.8’s Allocation Profiler’’4. I will use the
same example given to demonstrate how this works in practice. Take the example
of serialising a CSV5 file with some data: We can benchmark this code with some
data:

julia> rows [rand(10) for in 1:128];

julia> @benchmark TestAllocs.serialise($rows);

We can see that after compilation, we still have a huge amount of allocations
present (over 5000 allocations), and a huge amount of time is spent garbage
collecting. Instead of manually trying to figure out which lines are allocating, we
can instead use a profiler to find this information out automatically. In order to do
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3 Garbage Collection

4+https://live.juliacon.org/t
alk/YHYSEM

5Comma Separated Values


https://live.juliacon.org/talk/YHYSEM
https://live.juliacon.org/talk/YHYSEM
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module TestAllocs
function serialise(rows::Vector{Vector{T}}) where {T}
output o
for row in rows
for col idx in eachindex(row)
val row[col idx]
output = output string(val) # string concat
if col _idx < length(row)
output output L
end
end
# add a newline
output output “\n"
end
return output
end
end

this, we must use the Profile. j1 package, which is included in the base library.
You can run

using Pkg; Pkg.add("Profile")

to add this to your environment. Now we can run the profiler, to specifically track
the allocations®:

using Profile
Profile.Allocs.@profile sample rate=1 TestAllocs.serialise(rows);

One can choose a sample rate between 0 and 1. It is recommended to use @time
first to figure out how many allocations there are, and if there are many, to use a
small sample rate. If you choose a number that is too large, this profile will take a
very long time to finish. In order to visualise these allocations we will also use a
package called PProf.jl (created by Google, which you will also need to install).
You can run the following code to visualise the allocations in a web browser:

using PProf
PProf.Allocs.pprof(from c=false)

The from_c parameter will allow you to filter out any stack frames internally
allocated by the Julia runtime, which usually just clutters up your results. You

Algorithm 5.1. An example algo-
rithm to show how to profile mem-
ory allocations.

®You should make sure that you
have run the code to be profiled
at least once to avoid profiling the
compilation process of the function
as well.



Pprof VIEW SAMPLE REFINE CONFIG DOWNLOAD Q serialise] unknown allocs

search: 5120 of 5120 total samples ( 100.000%)

(::VSCodeServer.var\"#61#62\")()

(::VSCodeServer.var\"#106#108\"{Module, Expr, REPL.LineEditREPL, REPL.LineEdit.Prompt})()

(::VSCodeServer.var\"#107#109\"{Module, Expr, REPL.LineEditREPL, REPL.LineEdit.Prompt})()

will get a link to a localhost website (locally hosted on your machine), which lets
you view the results.

If you change the view to a flame graph (View->Flame Graph) you can see
something like Figure 5.1. Changing the sample from allocs to size (Sample-
>size) will weight the size of each block by the size. The bars at the bottom are
the most useful as these refer to the lowest level calls. You can see that the problem
function is our serialise function. Use the search bar to highlight this function
call. Once highlighted, you can switch to the source view, which will highlight
for us where all the allocations come from.

pprof VEW - SAMPLE - REFINE -~ CONFIG ~ DOWNIOAD ~ Q Search regexp unknown allocs

serialise(::Vector{Vector{Float64}})

Total: 0 5120 (flat, cum) 100%

2 . function seriali Vector{Vector{T}}) where {T}
output = "*

4 for row in rows

5 for col_idx in eachindex(row)

6 . val = row[col_idx]

7 3840 output = output * string(val) # string concat

8 . if col idx < length(row)

9 1152 output = output * ","

10 . . end

11 . end

12 . . # add a newline

13 . 128 output = output * "\n"

14 . end

15 . . return output

16 . end

17 . . end

Looking at Figure 5.2, we can see that we are allocating a lot whenever we
are concatenating a string, and also when converting a value to a string. Each
concatenation produces a new string which causes another allocation. Instead
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Figure 5.1. A flame graph show-
ing the number of allocations of the
serialise function.

Figure 5.2. A source view showing
the number of allocations of each
line in the serialise function.
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of concatenating, we want to print to a buffer instead. Let’s look at an improved
version of this code, shown in Algorithm 5.2.

module TestAllocsFast A.lgorithm 5.2. An examPle algo-
function serialise(rows::Vector{Vector{T}}) where {T} rithm to Shf’W how ’fO.PFOflle mem-
buffer = T0Buffer() ory allocations, but fixing the per-

. formance issues of Algorithm 5.1.
for row in rows

for col _idx in eachindex(row)
val = row[col idx]
print(buffer, val)
if col idx < length(row)
print(buffer, ",")
end
end
# add a newline
print(buffer, "\n")
end
return String(take! (buffer))
end
end

If we rerun the results, we can see a huge performance improvement:

julia> @benchmark TestAllocsFast.serialise($rows)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.

Range (min .. max): 159.687 us .. 8.916 ms . GC (min .. max): 0.00% .. 93.63%

Time (median): 270.199 ps i GC (median): 0.00%

Time (mean * 0): 270.715 us = 584.493 us . GC (mean = 0): 14.67% = 6.62%
‘-_ -—*

-— L -

160 us Histogram: frequency by time 304 pus <

Memory estimate: 568.76 KiB, allocs estimate: 2570.

We can see from Figure 5.3 that the allocations are much improved in terms of
size, but there are still lines which allocate. This implementation is not completely
optimised, but it has improved hugely on the previous implementation. The
advantage of this profiling approach is that you can find allocations that you may
not have realised are there.
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Pprof VIEW SAMPLE REFINE CONFIG DOWNLOAD Q_ search regexp

unknown size

serialise(::Vector{Vector{Float64}})

Total: 0 508.46kB (flat, cum) 100%

1448 buffer = ToBuffer()

s08.28kB print(buffer, val)

38 return string(take! (buffer))

5.4.1  Conclusion

While these practical methods give you a wide array of tools, which can be
used to analyse runtime metrics, they do not give you the full picture about the
performance of the studied algorithms. For one, each of the performance metrics
are specific to the hardware on which the benchmarks were run. This makes
it almost impossible for different researchers to compare their results via these

empirical methods, unless they are running each algorithm on the same hardware.

Alongside empirical benchmarks, we must also have a set of theoretical tools
which can be used to quantify the performance of an algorithm. This is going to
be the topic of the next section.

5.5 Computational Complexity

When timing our algorithms we are implicitly asking how many resources an
algorithm needs. As mentioned before, these resources can be in terms of time
or space requirements. Space refers simply to the amount of information the
algorithm needs to “remember” at any one time. We will look at both of these
type of resources here.

First, we need to provide a distinct approach to the practical measurements of
the previous section. The failings of this approach is that it was often very abstract
to compare algorithms on different hardware, as the numbers themselves are

somewhat arbitrary and highly coupled to the system running the benchmarks.

Figure 5.3. A source view showing
the number of allocations of each
line in the faster serialise func-
tion from Algorithm 5.2.
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We need a way to describe the typical performance of an algorithm, abstracted
away from the absolute time taken to run the algorithm. The way we can analyse
this is by asking about scale. In order to do this, let’s create a very simple example
algorithm as seen in Algorithm 5.3.

function elementmul(a, b) Algorithm 5.3. A simple and gen-
# Make sure the inputs are the same size eral implementation that calculates
@assert all(size(a).==size(b)) the element-wise multiplication of
# Allocate a new array to store the result two arrays, a and b.
C similar(a)
for i in eachindex(a)
cl[il = alil * b[i]
end
return c
end

This algorithm is only correct when the inputs are arrays of the same size. The
eachindex function is an iterator which allows the for loop to iterate through
each element in the array a. The similar function is very helpful, as it allows us
to create a new array which is the same size and type as a, but with no values
specified. The values in this array are often random, as the elements are not set
when created.

What do we mean when we talk about scale? Let’s think about the size of the
inputs. As an example, let’s say that a and b are n-dimensional vectors. How will
the resources used scale with n?. In order to answer this, we need to count how
many lines of code are executed. If we ignore the size check, we first arrive at
allocating the new array. Allocating is the process of carving out a section of your
memory in which to store some results during the runtime of your program. An
array can be deallocated to free up space for other objects during the runtime.
Allocating is usually an expensive operation, but we don’t know how it scales with
the input size, so let’s just denote this with s(n), which is a function describing the
time cost of allocating an array using the similar function; for now, let’s assume
that this can be done in O(n¥) where k < 1. Next of all, we have the for loop. We
can ignore initialising the for loop, since this is not dependent on the number of
times the for loop will be executed. However, the code inside the for loop will
iterate many times. In this case, there is an iteration for each element in the a (or
b) array. This means that this piece of code will execute n times. The return at the
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end of the function also does not scale with n. We can conclude that this piece of
code will likely scale linearly with 7. This means that the time taken to run this
code should be of the form:

T(n) = cin+co (5.1)

This is the equation of a straight line, and what we can do is actually time this
function using the @elapsed function, for different sized inputs and graph this to
test our analysis.

104

Time (s)
—
9

10-°

10% 104 105

In Figure 5.4, you can see that the time is roughly linearly proportional to the
size of the vectors in log-log space. Since we can model this relationship as a
straight line in log-log, we can write plot is log(t — to) = mlog(n) + ¢, where m
is the gradient of the line and c is the t-intercept. This is equivalent to

t=to+ An™, (5.2)

where A = ¢ and t( is some constant overhead time. If we were to calculate this,
we would see that m is roughly 1, which means this function scales linearly. This
means that our assumption about the similar function was correct, at least in
the range of n values seen.

Figure 5.4. Time taken when using
elementmul for several values of n.
The time taken is measured several
times for each value of n using the
@belapsed macro from Benchmark-
Tools.jl.
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Exercise 5.1. Can you design an experiment to test the time complexity of the
similar function? Do the results change when comparing the distribution of
times taken, when compared with taking the minimum time?

Almost any computer that we run this experiment on will give us the same
result, that the time taken for elementmul to execute is linearly proportional to
vector size 1. The results will not be exactly the same, since the gradient and offset
of the line will be different. These are the constants ¢; and c; in Equation (5.1).
For this reason, Computer Scientists often use asymptotic notation, or more fondly
referred to as Big O notation. This type of notation drops the constants from the
equation, but also simplifies the equation to only include the fastest scaling terms
of n. This means that if we have a time relationship of T(n) = can? + c1n + co, we
would only keep the n? term as this term grows the fastest. For this example, the
Big O notation would be O(n?). The way we calculate the important terms is by
taking limits as n approaches co as shown below:

lim T(n) = lim n?(c; + ay C—g) =n?(cp +0+40) = con? (5.3)
n—00 n—00 n n
One can see that we can factor out the biggest term 7% and the remaining terms
will approach 0 as n approaches co. This allows us to ignore these terms, leaving
only the constant multiplied by 12. Since we are also not interested in the constant,
we drop this to leave us with the asymptotic time complexity being O (n?).

5.5.1 Examples

The process of assessing runtime is a skill that can be easily learnt with practice.
For this reason, let’s go through a few algorithms and assess their computational
complexity in both time and space.

Straightforward Nearest Neighbour Calculation

To start with, take a nearest neighbour algorithm. Given many points, forming
a “point cloud”, and an input point, the algorithm calculates which point is
closest to every other point. This algorithm is commonly used in machine learning
classification problems. To define this problem, we have a cloud of D dimensional
points. We have N of these points. The point cloud can therefore be represented
by an N x D array, since we need to store D numbers for each of the N points. The
output is an N-dimensional array. The value of index i in the array corresponds
to the index of the closest point to the i point in the point cloud. We also need
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to define how we measure the distance between points; to keep this simple, let’s
use the Euclidean distance.

function nearestneighbour(pointcloud)

# Get the dimension and size of the point cloud

N, D size(pointcloud)

neighbours zeros(Int, N)

# Allocate a new array to store the result

for i in 1:N
point i pointcloud[:, il
# Set the current minimum distance to the
# largest possible value, given the type.
min_distance squared typemax(eltype(pointcloud))

for j in 1:N
point j pointcloud[:, jI
distance squared sum((point i .- point j)."2)

if min_distance squared < distance squared
min distance squared = distance squared
neighbours[i] j
end
end
end
return neighbours
end

Now, let’s calculate the computational complexity of Algorithm 5.4. First, let’s
identify how the algorithm scales with the number of points, N. We first notice
that we allocate an array of N integers. If we are on a 64-bit system, then this takes
up 64N bits of memory. After this, we hit our first for loop. The variables here do
not have to be stored in memory and hence are not allocated on the heap, but in
fact, are allocated on the stack. This means that their allocation is trivial. However,
this takes a linear amount of time to do. Keep note of this. Finally, we enter into
our second nested for loop, which occurs N times. Here, we are calculating the
distance between two points and then possibly writing to memory. The operations
here are linear (dependent on D) and hence we can count this as a single ““unit
of computation”’; it must be realised that this calculation happens N? times. This
is the only place where the algorithm scales with N and hence we can conclude
that the complexity of this algorithm is O(N?). In terms of memory footprint,
this algorithm scales linearly with N. The important takeaway here is that each

Algorithm 5.4. A simple imple-
mentation of a nearest neighbour
algorithm, using a Euclidean dis-
tance function and calculating the
nearest neighbour to each point in
the cloud.
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nested for loop makes you multiply by the number of times the loop occurs. We
can explore this idea further with a recursive algorithm.
Recursive Complexity

function recursivecalc(n, a)
if n==1
return a*a
end

s 0.0
for i in 1:n

S recursivecalc(n-1, i)
end

return s
end

Before we go into details, try and have a go at calculating the complexity of
this algorithm.

Since this is a recursive algorithm, let’s write down what happens at one step of
this computation. Let us calculate the complexity of recursivecalc(k, 1), where
k > 1and k € Z. We ignore the first check (however, we must remember that
this takes a constant amount of time). Then we go into a for loop with the inner
loop taking O(f(k — 1)) amount of time complexity, where f is the unknown
complexity of the algorithm. This means that the computational complexity can
be written as

O(f(k)) = Ok x f(k—1)). (54)
This fundamentally is a recursive calculation. If we substitute this equation back
into itself, we find that O (f (k)) = O(k(k—1) x f(k —2)). Each time we substitute
the equation back into itself, we multiply another term, until we are left with
£(1), which can be calculated exactly, as this takes linear time, which therefore
has a value of just 1. The complexity function is therefore given by f(k) = k! and
hence the computational complexity of this algorithm is O (k!). If we were to do a
similar substitution process in the code, as we did with the equation, we would
find that we would have k nested loops. Each loop multiplies the complexity by
the number of times the loop is iterated through. This is a simple rule to use when

calculating complexity, which is just derived from the definition of multiplication.

Algorithm 5.5. An arbitrary algo-
rithm to illustrate the rules of calcu-
lating computational complexity.
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Tree-like Complexity

A tree is a very common data structure in computer science, since they often
have algorithmic implementations which have far better computational complex-
ity. Let’s take an example of inserting a number into a sorted list. Let’s say we
have a sorted array of N numbers and want to insert a new number into the
correct location in this list. An implementation of this algorithm could look like

the following:

function insertintosorted! (numbers, num)
n = length(numbers)
startpoint 1
endpoint n
while startpoint-endpoint > 1
midpoint (startpoint+endpoint)+2
if num < numbers[midpoint]
endpoint midpoint
elseif num numbers[midpoint]
startpoint midpoint

else
insert!(numbers, midpoint, num)
return
end
end
insert!(numbers, startpoint, num)
nothing

end

Here, since we have a while loop instead of a for loop, so it is not immediately
obvious how many times it is executed. However, we know that the range being
checked halves upon every iteration of this while loop. The while loop ends either
when the number is prematurely inserted, or when the range has contracted to
1. This means that we need to ask the question - how many times do you have
to halve 7 to get 1? In mathematical terms, we are asking, which x satisfies the
equation 1 x (3)¥ = 1, which is solved by x = log, (). This means that this
algorithm scales with the logarithm of 7, and hence the complexity is simply
written as O(log(n)).

This process of cutting down a search space by a constant factor is surprisingly
common in many tree-like algorithms. Having an O(log(n)) algorithm is far
more performant than even linearly complex algorithms (O(#n)). Consider a linear

Algorithm 5.6. A simple algorithm
which inserts a number into an al-
ready sorted list, making sure the
list is still sorted after insertion.
This algorithm assumes the list is
sorted in ascending order.
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implementation for this same problem that iterates through each of the numbers in
the list in order, until the correct place to stop is found. This implementation would,
on average, take around 7 iterations, and hence would be a linear algorithm. If
we had 10° elements, the tree-like implementation would be many orders of
magnitude faster than any linear implementation.

5.5.2  Conclusion

Hopefully, one has gleaned an intuition for calculating computational complexity.
While the topic may at first appear somewhat intimidating, one need only be able
to count how many times each line is being run, which is usually rather straight-
forward. This process can become arbitrarily more difficult for more obscure and
complex algorithms, especially when the algorithm relies on random numbers.
The main takeaway here, is that nested for loops incur a huge computational cost,
especially when processing large datasets. If one can avoid this cost with a more
efficient algorithm, then it is usually worth the effort to use it, especially if you
need a faster speed.
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6 Optimising Serial Code

In this chapter, we will learn about optimising the code you write. Here, we will
only talk about sequential performance, as we save the discussion of parallelising
your code to later chapters. It is important to understand that when we talk about
optimisation here, we are not talking about the use of the right algorithm. Here,
we are entirely focused on the practical performance of our algorithms on specific
hardware, not with the theoretical performance of an algorithm. This is a way of
bringing back the constants from the Big O notation, which tell you the latency
of the operations and the speed at which they perform. It is entirely possible
that an O(n) algorithm outperforms an O(logn) algorithm, if the system size is
small enough. For this reason, we must take a practical view when talking about
optimisation.

We will rely on benchmarks using the BenchmarkTools.jl package to see perfor-
mance differences.

6.1 Caching and Memory Locality

In Section 3.1.2, we briefly discussed how modern CPUs are structured. This topic
usually takes a backseat when talking about performance comparisons of various
algorithms. However, it is of paramount importance when writing performance
critical code.

In Figure 6.1, one can see a model of how physical cache on the CPU is struc-
tured. It is important to keep in mind that L1-L3 caches are physically stored on
the CPU die. The CPU and the RAM (the main memory) are connected via the
motherboard, making accessing the RAM a much slower operation than accessing
the onboard L caches. It is important to remember that the caches closest to the

Slowest

Fastest

Figure 6.1. A diagram of a typi-
cal cache setup for a dual-core pro-
cessor. The green arrows show the
direction of memory travel. The
closer the memory is to the CPU,
the faster the memory transactions
are.
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CPU are the fastest, but lowest capacity, with increasing capacity and latency
moving further away from the CPU.

An important observation is that if the memory required by the CPU is stored
in the L1 cache, then the operation to retrieve that memory is extremely fast (low
latency). Again, if it is stored in the L2 cache, then it is a bit slower to access, but
the CPU is still able to access the memory without having to go to RAM. The
story is the same for the L3 cache, which is shared amongst all CPU cores. The
decrease in speed comes from latency in retrieving the information, if you have to
check more places, it will take longer, even if checking each place takes the same
amount of time.

It would be very beneficial if all the data required in a program were able to
be stored in one of the caches, and the processor would try and minimise the
number of times memory has to be retrieved from RAM. A cache miss happens
when memory has to be retrieved from RAM, instead of being available in the
cache. If the CPU is able to predict what memory will be needed next, it is able to
store this memory inside the cache so that cache misses can be avoided.

Effectively handling cache relies on knowing as much about the program’s
effect on memory as possible - so that the compiler and the produced machine
code can lay out the memory in a way that is cache friendly. A CPU contains
heuristics on what memory to cache, and it is important to align your code with
the expectation of these heuristics. This is also why types are so important, since
a type essentially specifies how much memory an object takes up and what
the physical bits mean. If a compiler knows the type of the object, it can write
instructions to reserve the exact amount of space required for that object, and
make it more likely to be available in the cache when it is needed.

One trick that computers use to minimise cache misses, is to retrieve entire
blocks of memory when iterating over an array, instead of a single value: This is
known as a cache line. The first time you access an array, and try to access the
first element, the program can guess that the next few values in the array may be
needed and hence will copy the next few items into the cache as well. This way,
when the program iterates to the next element, it is already in the cache, and a
journey back to RAM is not required. The next section will discuss a specific form
this takes.

Finally, code may be written as to minimise the amount of memory that needs
to be stored. If we are only operating on a few bits of memory at once, the machine
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instructions can keep all these memory inside registers on the CPU - avoiding
the need for storing anything in cache!

6.1.1  Multidimensional Array Indexing

As Julia is designed around numerical computation, it contains an implemen-
tation for multidimensional arrays in the core library. Multidimensional array
support is critical for scientific computing. Python’s main package for this is
numpy and MATLAB is centred around the multidimensional array. It is impor-
tant to understand how these arrays are actually stored in memory, so that we
can avoid introducing performance hits to our applications.

You will remember that one dimensional arrays are stored in a contiguous
block in memory and the variable which “’stores” the array is, in fact, just a pointer
to the starting point of this contiguous block. The memory address of any value in
the array can be calculated by knowing the index of the element and appending
this to the value of the pointer. The question then arises, if an array is stored as a
contiguous block of memory, how is a multidimensional array stored? The answer
is simple, it is still stored as a single 1D block of memory, the only thing that
changes is how one calculates the index into that 1D array, based on the indices
from each dimension. One can think of this as splitting up a matrix (or a tensor)
into rows or columns and placing them side by side, and labelling the final 1D
string of elements with their position in that array.

Take the example of a matrix. A matrix has two numbers i and j which we will
take to represent which row and column the element lives in respectively. The
element of the matrix A, indexed as A;; is the number in the i" row and the jth
column. There are two options here for storing this array in linear memory. The
one which Julia chooses is known as column-major order, which calculates the
linear index, k, as follows:

k = j X Nrows + 1, (6.1)

where i, j and k are using zero-based indexing and Nyows is the total number of
rows in the matrix. The alternative equation which uses row-major ordering (as
in numpy’s implementation) uses the following equation:

k =i X Neois +J, (6.2)

where N is the total number of columns. The difference between these orderings
can be seen in Figure 6.2.

Row-major order

a a
a a
a a a

Column-major order

a a a
a a a
a a d

Figure 6.2. A diagram from
Wikipedia (https://en.wikipedi
a.org/wiki/Row-_and_column-ma
jor_order) which shows the way
in which multidimensional arrays
are stored in linear memory under
row-major and column-major or-
dering schemes.
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These schemes can be extended into multiple dimensions. The general rule of
thumb for column-major indexing is that one should begin incrementing from
the left-most index first, and then increment each subsequent index once one
reaches the end of that index.

We can design an experiment to compare the same algorithm, with the only
difference being the order in which data is iterated over through an array. For
this experiment, we will take the problem of implementing matrix addition. The
implementations are given in Algorithm 6.1 and Algorithm 6.2 for row-major and
column-major ordering respectively.

function row major matrix add!(C, A, B)
@assert size(C)==size(A)==size(B)
@inbounds for i in axes(A, 2)

for j in axes(A, 1)
Cli, j1 = Ali, j1 + B[i, jl
end
end
nothing
end

function column major matrix add!(C, A, B)

@assert size(C)==size(A)==size(B)
@inbounds for j axes (A, 2)
for i in axes(A, 1)
Cli, j1 = Ali, j1 + BIi, jI
end
end
nothing

end

These two algorithms are theoretically exactly equivalent, since the order in
which the operations happen has no effect on the output. Each algorithm performs
identical operations on the data, the only difference is the order in which these
operations are calculated, which has no effect on the output. One would expect
these algorithms to have the same performance, but let’s test this.

julia> N 1024; A rand(N, N); B rand(N, N); C
julia> @benchmark row major matrix add!($C, $A, $B)

similar(A);

Algorithm 6.1. This algorithm
shows the matrix addition of two
2D arrays, with the result being
stored in a third array C, which is
mutated. The bounds checking is
turned off for performance reasons.
In this example, the loop is exe-
cuted following row-major order-
ing, such that the right-most index
is incremented first.

Algorithm 6.2. This algorithm
shows the matrix addition of two
2D arrays, with the result being
stored in a third array C, which is
mutated. The bounds checking is
turned off for performance reasons.
In this example, the loop is exe-
cuted following column-major or-
dering, such that the left-most in-
dex is incremented first. This is fol-
lowing the linear indexing pattern.
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BenchmarkTools.Trial: 691 samples with 1 evaluation.

Range (min .. max): 7.176 ms .. 7.330 ms | GC (min .. max): 0.00%

Time (median): 7.222 ms i GC (median): 0.00%

Time (mean * o0): 7.224 ms + 17.390 us | GC (mean = o): 0.00% *
el .

—_—_-—_-_ ——

7.18 ms Histogram: frequency by time 7.29 ms <

Memory estimate: 0 bytes, allocs estimate: 0.

julia> @benchmark column major matrix add!($C, $A, $B)
BenchmarkTools.Trial: 6647 samples with 1 evaluation.

Range (min .. max): 717.298 ps .. 880.502 us i GC (min .. max): 0.00
Time (median): 736.976 s i GC (median): 0.00
Time (mean * 0): 735.259 us = 7.836 us i GC (mean = o): 0.00

— ‘
__—‘—_—_-.-___ [ |
717 us Histogram: frequency by time 750 ps <
Memory estimate: 0 bytes, allocs estimate: 0.

There is a huge difference between the performance of these two algorithms,
about a 40x difference! Simply swapping the order in which one iterates over
rows or columns can have a big impact on performance. This is because the
memory is aligned in order to avoid as many cache misses as possible.

6.1.2 Hardware Vectorisation

One of the big selling points of Julia, is that we do not need to write our code in a
vectorised way for performance. Here, we are explictly reserving vectorisation to
mean performing bulk, array-level operations (often element-wise). Let’s take the
example of adding two matrices together, as given in the previous example. There,
we used a for loop to achieve this. We can do the same by using the broadcasting
notation in Julia, which operates element-wise: We can benchmark this to see

function broadcasting add!(C, A, B)
C .=A .+B
nothing

end

it is very similar to the previous implementation, while being a much simpler
written implementation:

AND MEMORY LOCALITY O1

Algorithm 6.3. This algorithm
shows the element-wise addition
of two arrays, A and B, and storing
the result in another, preallocated
array C.
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julia> @benchmark broadcasting add!($C, $A, $B)
BenchmarkTools.Trial: 6638 samples with 1 evaluation.

Range (min .. max): 717.718 ps .. 826.287 us . GC (min .. max): 0.00% .. 0.00%

Time (median): 737.687 ps i GC (median): 0.00%

Time (mean + o): 735.827 us = 7.577 us | GC (mean = o): 0.00% + 0.00%
il

_-_—*_L—_ |

718 pus Histogram: frequency by time 750 pus <

Memory estimate: 0 bytes, allocs estimate: 0.

We can also write the equivalent for loop, taking advantage of Julia’s linear
indexing, even for multidimensional arrays: We can benchmark this example to

function vector add!(C, A, B)
@inbounds for i in eachindex(C, A, B)
= A[i] + B[1i]

Cl[i]
end

Algorithm 6.4. This algorithm
shows the element-wise addition
of two arrays, A and B, and storing
the result in another, preallocated
array C, using a native for loop.

nothing
end

see it has roughly the same performance as our array implementation:

julia> @benchmark vector add!($C, $A, $B)
BenchmarkTools.Trial: 6649 samples with 1 evaluation.

Range (min .. max): 717.708 us .. 842.528 us . GC (min .. max): 0.00% .. 0.00%

Time (median): 736.665 s i GC (median): 0.00%

Time (mean * 0): 735.034 us = 7.562 pus . GC (mean = 0): 0.00% + 0.00%
_ e N

I S S

718 us Histogram: frequency by time 749 us <

Memory estimate: 0 bytes, allocs estimate: 0.

This means that there is only really an aesthetic difference between using the
broadcasting (vectorised) notation, and a for loop. Even if we are use @simd to
take advantage of hardware vectorisation, we will see no difference, as the Julia
compiler is smart enough to do this automatically where it is safe. Benchmarking
this leads to the same results:
julia> @benchmark vector simd add!($C, $A, $B)
BenchmarkTools.Trial: 6650 samples with 1 evaluation.
Range (min .. max): 715.885 us .. 824.624 us | GC (min .. max): 0.0
Time (median): 736.625 us GC (median): 0.0
Time (mean * o0): 734.902 us = 7.460 ps § GC (mean = o): 0.0
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function vector simd add!(C, A, B)
@inbounds @simd for i in eachindex(C, A, B)
C[i] = A[i] + BI[i]

end
nothing
end
_nnimmilien.,
_—*__-_I
716 us Histogram: frequency by time 749 ps <

Memory estimate: 0 bytes, allocs estimate: 0.

The @simd macro is usually not needed to speed up your for loops, but can be
helpful to give the compiler some additional leeway when the ordering of the
results may be important, for example when performing a reduction. From the
help documentation, this macro asserts several properties of the for loop:

e It is safe to execute iterations in arbitrary or overlapping order, with special
consideration for reduction variables.

o Floating-point operations on reduction variables can be reordered, possibly
causing different results than without @simd.

The @simd just gives the compiler additional flexibility in auto-vectorising a for
loop. Some constraints that should be followed:

e The loop must be an innermost loop.

e The loop body must be straight-line code. Therefore, @inbounds is currently
needed for all array accesses. The compiler can sometimes turn short && (and),
|| (or), and ?: (ternary) expressions into straight-line code if it is safe to
evaluate all operands unconditionally. Consider using the ifelse function
instead of 7: in the loop if it is safe to do so.

e Accesses must have a stride pattern and cannot be ““gathers” (random-index
reads) or “scatters”’ (random-index writes).

e The stride should be unit stride.

Algorithm 6.5. This algorithm
shows the element-wise addition
of two arrays, A and B, and stor-
ing the result in another, preallo-
cated array C, using a native for
loop with @simd.
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6.1.3 Where does memory live?

In Section 3.2.7, we introduced the idea of the stack and the heap as two data
structures a program uses to organise its data. Again, these are both stored in
RAM, and there is no physical difference between the memory in the stack and
the heap. As a rough approximation:

e The stack is a special area of memory which stores temporary variables (such
as local variables of a function) which are deleted (or forgotten) once a function
has finished executing. This is temporary storage.

o The heap is used for storage which has variable length, or for objects that are
too large for the stack.

It is important to be able to identify which variables will be allocated on the
stack, and which will be allocated on the heap. We will talk in later sections about
“allocating” memory, but this almost exclusively refers to storing memory on
the heap. In this section, we will talk about the key difference between these
structures.

Let us analyse the following function:

function stack only function(x::T) where {T<:Number}
a X 2
b sin(x)+10
C cos(x)-5
d a‘b*c
return d
end

Algorithm 6.6 seems to create 4 different variables. It is critical to understand

that this function does not allocate any memory, when the input is just a number.

But it is obviously using memory, since we create many different variables. The

answer to this apparent contradiction is that it allocates memory on the stack.

The reason these variables can exist on the stack is that the size can be predicted

at compile-time and hence, space in the stack can be made for these variables.

These variables are likely to be able to be stored in physical cache as well, since
the stack is so frequently accessed that it is likely to be in the cache.

Algorithm 6.6. An example func-
tion which does not allocate any
memory on the heap.
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function heap function(x::T) where {T<:AbstractArray}

a X .+ 2

b sin.(x) .+ 10
C cos.(x) .- 5
d a.*b.*c
return d

end

Instead, let us change the example, so that instead we pass in an array with a
single element, shown in Algorithm 6.7.
We can benchmark these two functions on an array:
julia> A rand(128); B similar(A);
julia> isapprox(stack only function.(A), heap function(A))
true
julia> @btime begin
($B) .= stack only function. ($A)
nothing
end
887.104 ns (0 allocations: 0 bytes)
julia> @btime begin
($B) .= heap function($A)
nothing
end
1.022 pus (4 allocations: 4.25 KiB)

Remember that we are using interpolation with the $ character to ensure accurate
benchmarking. Looking at the results, we see that the stack only function does not
allocate any memory, but the heap function allocates some memory four times.
These algorithms are theoretically identical and yield the exact same results, so
why does one algorithm allocate memory and the other does not? Additionally,
why does the one with heap allocations run slower than the stack function?

In each example, we are using the broadcasting notation. Notice that in the
stack function we are applying the entire function element wise to the array A and
then storing the result element wise in the array B. As mentioned previously, the
broadcast notation will simply compile down into a for loop. Inside this loop, the
temporary variables a, b, c and d are stored on the stack. Since we have specified
where to put the result', no memory needs to be heap allocated.

In the heap function, we instead take in the entire array. Each line uses the
broadcast notation, but only on the right-hand side. This means that a temporary

Algorithm 6.7. An example func-
tion which a lot of temporary mem-
ory on the heap, under the same
logic as Algorithm 6.6.

* We have preallocated the array B.
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array must be allocated to store the result. Each of the variables is a new array
allocated on the heap, hence the 4 observed allocations from benchmarking. To re-
duce this, one could write the entire expression on one line, which would certainly
help, but it is often better to write a function for a scalar and use broadcasting
instead.

The performance difference between the two implementations is actually some-
what understated here. We are using @btime which reports the minimum time
taken. This will exclude any evaluations which are interrupted by the Garbage
Collector, which is likely to happen if this code is used many times within the hot
loop of your program. Here, we are only measuring the time taken to allocate
these new arrays, but ignoring the cost of having to clean them up, which can
often be significant, especially in parallel code.

The reason that the stack is able to store all the temporary information needed
is because the size of the intermediate values are known at compile time, whereas
the size of the array is not known and therefore must go on the heap.

One should remember that even though the data of the arrays are allocated
on the heap, the pointer® is stored on stack. Accessing the array information
requires dereferencing that pointer, causing some additional overhead, even if the
array only has a single element. It is much easier for the compiler to optimise the
machine code if the memory size and layout is known at compile time, instead of
having to introduce pointers.

What if the array we are using is of a known size? For example if we write a
function to calculate the length of a three-dimensional vector as in Algorithm 6.8.
This function happens to work for vectors of any length, as long as they are stored
in an array, with each element representing a component of the vector.

function cross(a, b)
[
(a[21*b[3]-a[3]*b[2]),
(a[3]1*b[1]-a[1]*b[3]),
(al[11*b[2]-a[2]*b[1])
]

end

We can benchmark this function:

julia> a rand(3);
julia> b rand(3);

> Remember that a pointer is just
the address to the place in memory
where other information is stored.

Algorithm 6.8. A simple imple-
mentation of calculating which cal-
culates the cross product between
two vectors a and b, which can be
any abstract arrays. This function
does not have any size checks, as
we are only focused on the perfor-
mance here.



6.1. CACHING AND MEMORY LOCALITY 97

julia> @btime cross($a, $b)
22.895 ns (1 allocation: 80 bytes)
3-element Vector{Float64}:
0.18242146759034802
-0.428829354451039
0.053461858289415076

This function runs very quickly, but there is a way we can make this even faster.
If we know we are using 3D vectors a lot, we can make use of a package called
StaticArrays.jl, which provides a nice utility for implementing fast algorithms
which allow arrays to be stack allocated since they are forced to be of a fixed size.
Let’s have a look at the implementation for this type of static array. Since this is an
external package, you may need to add the package with pkg"add StaticArrays"”
in the console. To be able to use the package, one needs to import it:

julia> using StaticArrays;

From here, we can add a specific implementation of the cross product function,
which returns a static vector with three dimensions. This implementation is similar
to our previous one, except we have added type information to the variables
and additionally swapped to using the SVector constructor, instead of the array

notation.
function cross(a::SVector{3, T}, b::SVector{3, T}) where {T} Algorithm 6.9. A concrete im-
SVector( plementation for a cross product
(a[2]*b[3]-al31*b[2]) when the inputs are two static vec-
! tors.
(a[3]*b[1]-al1]*b[3]), .
(al1]*b[2]-al2]*b[1])
)
end

We can benchmark this function as well, by first converting our test vectors to
static vectors:

julia> sa = SVector(a...);

julia> sb = SVector(b...);

julia> @btime cross($sa, $sb)
2.274 ns (0 allocations: 0 bytes)

3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3):
0.18242146759034802

-0.428829354451039
0.053461858289415076
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We can see that this implementation is a lot faster! This is because there are
zero allocations and the entire vector fits into the stack, and hence, is very likely to
be in the cache. Since the cross product is just 6 multiplications and 3 subtractions,
this is designed to be calculated locally. In this particular benchmark, this small
switch led to around a 11.5x speed improvement.

One thing to remember about static vectors is that they are best used statically,
and one should avoid mutating the elements. This is because a lot of the speed
comes from their immutability. Instead, one should create a copy of the vector,
with the value you want changed. Surprisingly, this is actually not that slow, as
the copy exists on the stack, and not in the heap.

This method acts as a nice route into the next section, which is specifically
dedicated to reducing heap allocations.

6.2 Reducing Allocations

By far, the easiest thing to look for during optimisation is the number and size of
allocations made in your code, and seeing if this can be reduced. In this context,
we refer to ““allocation” as reserving space in memory (RAM) to store data.
Most algorithms can be written in a way that allocates the space required at the
beginning of the execution, and reuses this memory throughout the execution of
the algorithm. Obviously, we as developers do not always know the amount of
space in memory when writing the code, however, when it is known, there is no
reason to take advantage of this.

6.2.1 Appending vs Preallocating

In languages like Python and MATLAB, it is very common to see developers
appending information to their arrays, instead of preallocating. Appending to an
array is when you add an element to an array, changing the size of the array.
In some languages, there is distinct nomenclature around which collections of
elements are static and which are dynamic (can have their size dynamically
change). For example, C++, which reserves the term "array’ to refer to a statically
sized array and "vector’ to refer to a dynamically sized collection. On the other
hand, C# uses the term ““List” for a resizeable array, and arrays are strictly statically
sized.



6.2. REDUCING ALLOCATIONS 99

The reason for the distinction in many languages is made on purpose, to dis-
courage the use of dynamically sized arrays whenever possible. When MATLAB
notices code that resizes an array (i.e. appends a value to the array), it warns the
user of the performance hit this process causes. Let’s look at an example below of
an algorithm which appends to an array:

numbers rand(100)
cumulative sum array []
total sum = 0
for a in numbers
total sum a
push!(cumulative sum array, total sum)
end

Every time we append to cumulative_sum_array, the computer needs to find
a free contiguous block of memory with (1 + 1) x 64 bits of space, in which a
new array, consisting of the old array and the new appended value, can be stored.
This also involves copying the information from the old array into a new location.
If this process is done 100 times, then you will have to allocate that many times,
and copy that many times, instead of just 100 reads and writes that this algorithm
requires.

Many languages, such as C#, implement a buffer system which allocates
more memory than is actually required for the array. When elements are
added to the array, more of the buffer is used. When the buffer runs out, the
new array will have space for all the elements and another, larger, buffer.
Usually the size of the array grows by a factor of /2 each time the buffer
runs out.

The same algorithm can be written without appending to an array, since we
know the size of the output:

numbers rand(100)
# The 'similar' function allocates an array,
# which is the same size and type as the input.
result_arr = similar(numbers)
total sum zero(eltype(numbers))
for i in eachindex(result_arr, numbers)
total sum numbers[i]
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result_arr[i] total sum
end

Notice that this only required a small number of changes to the algorithm,
but this can have a huge impact on performance. Let us turn this algorithm into
a function, and see the benchmark performance. The preallocated algorithm is

implemented in Algorithm 6.10, while the appending algorithm is implemented
in Algorithm 6.11.

function cumulative sum preallocated(numbers)
results similar(numbers)
total sum zero(eltype(numbers))
for i in eachindex(numbers)
total sum numbers[i]
results[i] = total sum
end
return results
end

function cumulative sum_appending(numbers)
results (eltype(numbers))[]
total sum = zero(eltype(numbers))
for i in eachindex(numbers)
total sum numbers[i]
push!(results, total sum)
end
return results
end

Looking at Figure 6.3, remembering that it is plotting in log-log scale, we
can see that the lines are roughly parallel, meaning that they have the same
computational complexity (in this case it is linear). However, there is a constant
difference between the lines, showing that the preallocated code is around one
order of magnitude faster for every input of 7. The constants that predict the speed
difference are left out in Big O notation, since they are merely implementation
details. This example clearly shows they are of great practical importance, and
show that computational complexity is not a complete toolkit when analysing
algorithms.

Algorithm 6.10. A simple imple-
mentation of the cumulative sum
calculation for an array of points,
which uses preallocation instead of
a dynamically changing array.

Algorithm 6.11. A simple imple-
mentation of the cumulative sum
calculation for an array of points,
which appends to an array instead
of preallocating.
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Note: Many programming languages implement variable sized vectors in a
more efficient way. When the vector is appended to, the runtime allocates 1+/2
spaces, and retains this additional space, in case the vector is appended to in
the future, in which case, there is space to allocate more values without needing
to copy the array. This significantly improves the performance of vectors, while
having them not allocate too much memory.

6.2.2 Using a cache

Many parts of your code will involve calculating a formula. For readability, many
programmers will separate out different terms in an equation into separate vari-
ables and then sum them together at the end. This has benefits for the programmer,
as the code becomes more readable and maintainable, but it can introduce perni-
cious performance bugs in the process. Let’s take a look at the following example
of coding up Equation (6.3):

_ 5x%sin(x?) +20

y(x) - exp(—4x) o xz (63)

101

Figure 6.3. Time taken when using
cumulative sum preallocated
and cumulative sum appending
for several values of n. The time
taken is measured several times for
each value of n and the minimum
time is taken, which dramatically
under-estimates the time taken
in the allocating function. It is
important to notice the log-log
scale used for plotting. We can
see that the preallocated version
is around an order of magnitude
faster for all values of n, in the
best case scenario of the allocating
version.



102 CHAPTER 6. OPTIMISING SERIAL CODE

Suppose that we had to write a function, which calculate a series of y val-
ues for each element of an array x. An initial implementation could look like
Algorithm 6.12.

Algorithm 6.12. A simple function
to represent a vectorised version of
Equation (6.3).

function example equation no cache(x)
numerator = 5 .* x .~ 5 .% sin.(x.”2) .+ 20

denominator = exp.(-4 .* x) .- x .” 2
y = numerator ./ denominator
return y

end

In this first implementation, we have split up the equation into two variables,
one for the numerator and one for the denominator of the fraction. First of all,
notice that we are using Julia’s broadcasting notion, introduced in Section 4.3.1.
Let’s benchmark this function with some data:

julia> x = rand(8192);

julia> @benchmark example equation_no_cache($x)

BenchmarkTools.Trial: 10000 samples with 1 evaluation.

Range (min .. max): 99.862 us .. 1.648 ms | GC (min .. max): 0.00

GC (median): 0.00%
2.13

Time (median): 102.988 s E
Time (mean * 0): 105.738 ps += 59.301 ps ' GC (mean %= o): % * 3.56%
il
- -
99.9 us Histogram: frequency by time 110 us <

Memory estimate: 192.14 KiB, allocs estimate: 6.

Notice that there are many more allocations than actually required for this
method, which should only allocate as much memory as is stored in x. Not only
is this implementation wasteful in terms of memory, but it is also slower since the
computer has to find space to store these numbers. We can modify the algorithm
to store intermediate values directly in the y array so that we only allocate once.
This is shown in Algorithm 6.13.

julia> y = similar(x);

julia> @benchmark example_equation_cache! ($y, $x)

BenchmarkTools.Trial: 10000 samples with 1 evaluation.

Range (min .. max): 104.251 ps .. 180.727 ps ' GC (min .. max): 0.0

Time (median): 106.545 ps i GC (median): 0.0

Time (mean # o): 106.837 us = 1.753 us | GC (mean = o): 0.0
el _ = -
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function example equation cache!(y, x)
# Set y to the value of the numerator
y .=5 .%x .75 sin.(x.72) .+ 20
# Divide out the denominator
y . exp.(-4 .* x) .- x .~ 2
return y

end

Bame ool e O N s e i B e
104 pus Histogram: log(frequency) by time 112 us <
Memory estimate: 0 bytes, allocs estimate: 0.

While the speed difference between these two implementations is not that
large on the lower end, the non-cache version has a significant tail on the timings.
Using this within a hot loop can lead to a huge performance degradation.

One major benefit to using broadcasting notation is that Julia’s compiler can
fuse broadcasted operations together, so that the intermediate results do not
allocate any memory. Additionally, we can specify where the results of these
operations should be stored. This is a significant advantage over Python, where
each intermediate result in an equation must allocate memory, since the equation
is interpreted and the operations cannot be fused together.

There is an obvious disadvantage to this approach - one need keep track of
all the cache variables, and the code can become verbose very quickly. For this
reason, there are a few rules which can be used to make this process simpler:

o Write out formulae and equations in scalar functions which are in turn, broad-
casted so that one need not deal with adding . before each operation, and so
that one avoids unnecessary allocation when trying to refactor code. This is
only usually possible with map operations.

e Frequently use broadcasting, so that the operation can be fused to avoid inter-
mediate results.

o Identify whether using a cache would have a significant performance difference
in the application. This usually involves functions that are called in a loop many
times. If the cache is only being used once (or only a few times) throughout
the lifetime of your program, this is probably a sign that you do not need to
cache the variable.
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Algorithm 6.13. A function to rep-
resent a vectorised version of Equa-
tion (6.3), implemented with a
cache variable, so that intermedi-
ate results are not stored. We pass
in the cache, relying on the caller
to correctly initialise the result. No-
tice the use of the ! notation (called
the “bang” notation), which is a
convention to let the users of the
function know the function mu-
tates the input, usually the first ar-
gument.



104 CHAPTER 6. OPTIMISING SERIAL CODE

e If many cache variables are required, consider using a struct to group all the
cache variables together and then pass this cache to the functions.

o If several sizes of cache are required (all of the same type), but only one cache
is needed at a time, then one can create a single variable which is of the largest
size required, and then create views of this variable to act as the cache for cases
where smaller values are needed.

e If the same sized cache variable is required many times, consider using a functor
(introduced in Section 4.3.5) to wrap the cache away so that one need not keep
track of it. Be careful when using functors (or closures) in multithreaded, as
multiple CPUs may be accessing the same cached memory at the same causing
race conditions, discussed in more detail later in this book.

On this last point, a functor, is a design pattern which stores local variables
inside a struct, with an override for calling the struct, such that one need not pass
the stored variables to the function. This is a more performant way of creating a
closure, giving you control over the types of the variables - which will help avoid
type instability3.

As one may come across closures in their code, an example of creating a closure
is given in Algorithm 6.14.

function create cached closure fn(cache type, cache size, fn)
cache = zeros(cache type, cache size)
cached fn(x) fn(cache, x)
return cached_fn

end

We have to create this function in order to use it:

3 See Section 6.7 later in this chap-
ter for more details.

Algorithm 6.14. An example pat-
tern for creating a closure to hide a
cache variable in a function defini-
tion. Closures should be avoided
for performance critical code, as
they can often result in poor type
inference at compile time. Functors
are usually much better than clo-
sures for this purpose.

fn create cached closure fn(eltype(x), length(x), example equation cache!);

y = fn(x); # Uses the cache created in the line above (non-allocating)

It must be stressed that this function is no longer thread-safe and cannot be
used in parallel. Closures can still work in parallel, but require some careful
consideration.



Usually,, it is better to provide two methods, one with a ““bang” which uses
some cached memory, and a second function, without a “bang” which creates the
cache to pass to the first method; this way, one can have a single implementation
of your algorithm which is memory efficient, while also providing an easy-to-use
function that does not require the user to keep track of cache variables, at the cost
of some performance. This is a good trade off, particularly when the function will
only be called once and a cache will not improve performance.

Note that closures are implemented much like functors behind the scenes.

Defining your functor and specifying the variables is much preferred as it is clear
what variables are being captured, and it is easier to guarantee better performance
due to type inference.

6.3 Memoisation

Sometimes, we have pure functions that will return the exact same output for a
given input. Instead of having to re-calculate these values again and again, we
may want to store these values so that they returned quickly, instead of having to
recompute the result again. This only makes sense when we are calling the same
method many times with the same inputs, and we have the memory resources to
keep track of the results.

This technique is known as memoisation, which caches the result of a function
call based on the input arguments. Let’s take a very simple example of calculating
a number in the Fibonacci sequence: We can create a functor to combine the

function fib(n)
if n==1
return 1
end
return n fib(n-1)
end

functor and the storage of the results in a dictionary: We can now create this
functor and use it to calculate our values:
julia> cached fib fn = CachedFib();

julia> cached fib fn(4)
24

6.3. MEMOISATION 105

Algorithm 6.15. An algorithm to
calculate the nt" Fibonacci number
via recursion.
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struct CachedFib

end

cache::Dict{Int, Int}

# Create an argument-less constructor
CachedFib() CachedFib(Dict{Int, Int}())
function (f::CachedFib) (n)

end

if n 1
return 1
end
cache f.cache
# Check if the cache contains the result
if haskey(cache, n)
return cache[n]
end
# If not, actually calculate the result
result n f(n-1)
# Store the result in the cache
cache[n] result
# Return the result
return result

Not that the backing cache does not have to be a dictionary, or even stored in
main memory, one can just as easily use a disk cache as well for results that take
a long time to run. This pattern can be very useful for long-running calculations
that may be interrupted, such as a HPC job. Using the disk as a cache can easily
allow you to recover from stops, avoiding having to recalculate everything from

the beginning.

6.4 Vectorising vs Loops

Even though we have already covered this in some detail, we must drive home
the point of comparing vectorised code and using a loop.

If you have come from MATLAB and Python, the gospel of optimisation is to
vectorise your code. Let’s first break down what this means. Take the following

two implementations of the same method:

function add!(c, a, b)
@inbounds i 1:length(a)

c[i] = ali] + b[i]

Algorithm 6.16. An algorithm to
calculate the nt! Fibonacci number
via recursion.
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end
nothing

end

# OR:

function add!(c, a, b)
c .=a .+b
nothing

end

These two implementations are essentially the same in Julia, except that the
first implementation does not check the bounds of the inputs before the loop,
which should be done but is removed for simplicity. The first function, containing
the for loop, would not be considered to be vectorised, while the second one
is the vectorised form. Vectorising your code, simply means writing your code
without these for loops, and in terms of only array operations.

In Python or MATLAB, vectorising your code makes a huge difference to
performance, despite the actual contents of the computation being essentially
the same. Why is there a difference? Well, the difference is because Python and
MATLAB rely on array calculations from a library written in a different, faster
language*. For example, Python extensively uses numpy, which is mostly written
in C, and only has Python bindings. When you write C = A 4 B, when A and B
are numpy arrays, then this addition happens “inside C”’, and not Python, which
is much slower as it is not compiled. Vectorising then, just means offloading most
of the computation into a lower level library (such as numpy), having the program
spend as much time as possible in the faster language and avoiding doing any
bulk of the calculation in the interpreted language.

So what about Julia? Well Julia is a compiled language, and hence is a fast
language and so does not need to make this distinction between vectorisation
and loops and both operations compile down to practically the same machine
code. For this reason, both implementations are practically the same in terms of
performance. This means you are free to write loops if it is easier for your code.

However, there are still reasons for preferring vectorisation in Julia. The first
reason is readability and maintainability. The broadcast notation (the vectorised
notation) is very powerful and can make the code look much cleaner, and hence
easier to maintain over time due to the simplicity. On the other hand, even though
running native code has practically negligible differences between vector and
loop form, if one would like to extend one’s algorithm to run on the GPU, then
the vectorised form can be easily (and automatically) translated into efficient

4Or rather, rely on highly opti-
mised routines which are compiled
in a language like C or Fortran.
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GPU kernels. Usually, this can be done without having to change a single line
of the source code, only changing the types of the arrays. This means you can
have the same code executing on both the CPU and the GPU, which is incredibly
powerful. This expressive power massively reduces developer time (since there
is only one implementation of an algorithm), while also reducing the effort spent
on testing. We will cover writing GPU code in more detail later.

6.5 Views

We have seen that allocating memory on the heap can negatively impact per-
formance, but what if we already have allocated memory, and simply want a
convenient way to look at a part of an array, without increasing code complexity.
This is where the view comes in handy. If you have used Python or MATLAB,
you will be familiar with slicing syntax:

julia> a = rand(3,3)
3x3 Matrix{Float64}:
0.398328 0.276889 0.282382
0.783487 0.979941 0.328688
0.218223 0.141403 0.113252
julia> b = a[l1:2, 1:2]
2x2 Matrix{Float64}:
0.398328 0.276889
0.783487 0.979941

This syntax, allows us to take a section of an array and manipulate it. The only
issue is that we have just created a copy of that part of the array! To prove this,
let’s mutate part of b and then look at the values of a:

julia> b .= 0
2x2 Matrix{Float64}:

0.0 0.0
0.0 0.0
julia> a

3x3 Matrix{Float64}:
0.398328 0.276889 0.282382
0.783487 0.979941 0.328688
0.218223 0.141403 0.113252
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Notice that a is unchanged. This is a good behaviour by default, as if any other
behaviour were implemented, this would lead to countless bugs. It is important
to remember that simply assigning a variable to an array, will assign by reference
and hence not make a copy, since the array variable is simply a pointer to the start
of the array:

julia> c = a; # c and a point to the same memory now

However, if we want to mutate part of an array, while not copying the memory,
we can just use a view. There is a handy macro that does this for us. Take the first

example using the @views macro®: 5 There is also the @view macro, but
@views will convert all array slicing
julia> b @views a[l:2, 1:2] into a view for an entire expression.

2x2 view(::Matrix{Float64}, 1:2, 1:2) with eltype Float64:
0.398328 0.276889
0.783487 0.979941

Now;, b points to the same four elements in memory as the top-left square of a.
To show this, let’s manipulate b and check a:

julia> b .= 0
2x2 view(::Matrix{Float64}, 1:2, 1:2) with eltype Float64:

0.0 0.0

0.0 0.0

julia> a

3x3 Matrix{Float64}:

0.0 0.0 0.282382
0.0 0.0 0.328688

0.218223 0.141403 0.113252

Notice that we have propagated this information back to a. This can be very
useful when one would like to avoid making copies of arrays, but needs to access
only part of the array.

6.6  Speed of Operations

This section is based off information from http:/ /ithare.com/infographics-operation-
costs-in-cpu-clock-cycles/, whose article is very well written and should be viewed.
They provide the infographic in Figure 6.4.

Taking a look at this graph, we can see that the basic operations, such as
addition, multiplication and even memory writes are very fast. A lot of the details
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Note: One should still be very careful, since the memory layout has not

changed, but the indexing scheme has changed. This means that even though

one may loop through the view using the correct indexing scheme, it is likely

that the memory is not contiguous and hence can have severe performance

penalties for using a view. In situations where memory locality is more

impactful than allocating memory, a copy may be worth making. Again, this

trade-off comes down to benchmarking, necessary for making an informed

decision.
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Figure 6.4. This table is an approx-
imate comparison of the speeds of
different operations on a typical
CPU. There is a lot of uncertainty
here, but it can be used to get a few
heuristics for which operations are
slow and which are fast.



of this graph are too complex to see, but one heuristic to see is the different
speeds of cache misses and allocation. One can see that allocation tends to be
orders of magnitude slower than simple cache read and writes, or simple numeric
calculations. Additionally, one can see that branching operations (if statements)
can be very costly when mispredicted. Modern CPUs often use branch prediction
to start execution one of the branches of an if statement while the statement is
checked. If the CPU gets the prediction wrong, then it has to backtrack which
costs many cycles. This is one of the reason you see many people opting for
“branchless” programming styles, where control loops are kept to a minimum.
This usually involves using boolean numerics to set a value to zero if something
is false and one otherwise and then summing both results together. Branchless
programming can have significant performance improvements if done correctly.

6.7 Type Stability

While Julia is a dynamic language, it can be very important for the compiler to
know the type of the variables being used, so that it can specialise on it. We have
been alluding to this throughout the book so far, but getting this wrong may have
huge performance impacts. Let’s get a concrete example:

function get fibonacci(n)
a 1
b=1
fibonacci_nums [1
push!(fibonacci nums, a)
push!(fibonacci nums, b)
for i 1:n-2
a, b b, a+b
push!(fibonacci nums, b)
end
return fibonacci nums
end

This calculates the first n Fibonacci numbers and stores the results in an array.
Here, we get the result of the vector being of type Vector{Any}. Let’s see what
effect this has on performance:

67 TYPE STABILITY 111

Algorithm 6.17. An example of cal-
culating the Fibonacci sequence by
appending to an array.
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julia> fibonacci nums = get fibonacci(50);

julia> typeof(fibonacci nums)

Vector{Any} (alias for Array{Any, 1})

julia> @btime sum($fibonacci nums)
655.310 ns (38 allocations: 608 bytes)

32951280098

We can see that this sum had many allocations, and took around 1 micro
second. If we simply make another array with the correct type, let us see the
difference in performance:

julia> fibonacci nums with type [f for f in fibonacci nums];
julia> typeof(fibonacci nums with type)
Vector{Int64} (alias for Array{Int64, 1})
julia> @btime sum($fibonacci nums with type)
5.951 ns (0 allocations: 0 bytes)
32951280098

Notice that the allocations were reduced by orders of magnitude. Additionally,
the runtime of these algorithms went from around 1.2 microseconds, to around
10 nanoseconds. In this example, when Julia knew the type of the variables, the
performance increased by a factor of almost 120. The reason why performance was
so low for the first method, is that Julia had to check the type of each individual
element in the array to make sure that it was the right type. In order to store the
array, Julia “boxes” the elements into the Any type, instead of storing the raw
binary in a contiguous array. Each element of the array is actually just a pointer
which references another location in memory, which could store information of
any time (and hence any size), and so Julia is forced into storing pointers, instead
of the raw values, as it does not know ahead of time how much space to reserve
in memory for each element. This brings many other issues, such as the data
not being stored together predictably, and hence entire blocks of memory cannot
be copied into the CPU cache, reducing the need to access memory. Not only
does the runtime have to manually check the type of each element in the array
(unboxing the elements), but it also has to find them one by one in memory be
dereferencing each pointer, sacrificing any opportunity to use the CPUs cache.

Why did this happen in the first place? This is one of the consequences of
appending to an array, starting from an empty array. It is not obvious what the
type of the array is. It is possible to initialise an empty array with a given type.
The correction to the code above is the following:



fibonacci nums (typeof(a))I[]

Otherwise, one could just preallocate an array with the appropriate type, which
would also give the array a concrete type.

This leads us into discussing type stability. If the compiler cannot trace the
types of the variables used throughout a function (each variable having a known
concrete type at compile time), then the function is said to be type unstable. This
means that the compiler will have to perform additional checks on variables with
unknown types at runtime, causes performance hits. These checks are not only
costly, but not knowing the types also removes the ability for the compiler to
specialise on the types beforehand.

An analogy is having an optimal plan before performing a task, compared to
“winging it"” on the fly, depending on the information you get. While one will
most likely perform the same subtasks at the same speed, having a plan can save a
lot of time and energy when moving between tasks, and knowing what resources
you will need ahead of time. Additionally, you will not need to perform basic
checks to make sure you are doing the right thing, as you will have organised
everything to be in the right place when you plan ahead.

Let’s take a look at an example of a type unstable function, shown in Algo-
rithm 6.18 below.

function example type unstable fn(x)

S 0

for x_i in x
s X i

end

S
end

This looks like a normal implementation. We can even run it and benchmark
to see if it works:

julia> x collect(1:100);

julia> @btime example type unstable fn($x)
5.751 ns (0 allocations: 0 bytes)

5050
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Algorithm 6.18. An example of
a type unstable function, which
sums all the elements in the array
X.
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function calc_summary(rows) Algorithm 6.19. Using.the RreYi-
return sum(example type unstable fn, rows) ous type unstable function within

a calculation.
end

There are actually no issues with this code so far that we can see, but let’s show
an example where some performance issues come out.

Let’s run this with some random test data:
julia> rows = [rand(rand(0:10)) for in 1:100];
julia> @btime calc_summary($rows)

259.697 ns (0 allocations: 0 bytes)
247.12173352279768

We see that the performance of this function is actually pretty good, and there
are even no allocations. However, there is actually a performance bug which
comes to light when we use the @code warntype macro provided by the base
library:
julia> @code warntype calc_summary(rows)
MethodInstance for Main.WeaveSandBox0.calc_summary(::Vector{Vector{Float64}})
from calc _summary(rows) in Main.WeaveSandBox0 at /nfsshare/home/ppyjml3/dev/fictional-computing-machine
Arguments
#self#::Core.Const(Main.WeaveSandBox0.calc summary)
rows: :Vector{Vector{Float64}}
Body: :UNION{FLOAT64, INT64}
1

— %1 = Main.WeaveSandBox0.sum(Main.WeaveSandBox0.example type unstable fn, rows)::UNION{FLOAT64, INT64}
return %1

Look for the sections that show the return typetobea Union{Float64, Int64}.
Unfortunately, this book does not show highlighting, however in your console
the parts with Union should be highlighted red so they can be spotted easily. This
means that the compiler cannot work out whether the return type should be a
float or an integer. A union type symbolises that the type can any of the types in
the union. This seems very strange, as we can see the type of the inputs is fixed:
julia> typeof(rows)

Vector{Vector{Float64}} (alias for Array{Array{Float64, 1}, 1})

We know we are only dealing with floats, however, the return type potentially
could be an integer. This is due to Algorithm 6.19 being type unstable, which
propagates out to our calc_summary function. We can check this by running
@code _warntype again:
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julia> @code warntype example type unstable fn((rows[1]))
MethodInstance for Main.WeaveSandBox0.example type unstable fn(::Vector{Float64})
from example type unstable fn(x) in Main.WeaveSandBox0® at /nfsshare/home/ppyjml3/dev/fictional-com
Arguments
#self#::Core.Const(Main.WeaveSandBox0.example type unstable fn)
x::Vector{Float64}
Locals
@ 3::UNION{NOTHING, TUPLE{FLOAT64, INT64}}
s::UNION{FLOAT64, INT64}

X _1i::Float64
Body: :UNION{FLOAT64, INT64}
1 - (s = 0)

o°

2 = x::Vector{Float64}
(@ 3 = Base.iterate(%2))
(@ 3 === nothing)::Bool
Base.not _int(%4)::Bool
— goto #4 if not %5
@ 3::Tuple{Float64, Int64}
(x i = Core.getfield(%7, 1))
Core.getfield(%7, 2)::Int64
(s =s + x 1)
(@ 3 = Base.iterate(%2, %9))
%12 = (@ 3 === nothing)::Bool
%13 = Base.not int(%12)::Bool
— goto #4 if not %13
- goto #2
- return s

o°
2
Il

o
(6]
I
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o°

~
I

o°
(e}
I

~ W

We can see that the variable s is type unstable (i.e. has a union type). This is
because the input array has the possibility of being empty. If this array is empty
then the loop gets skipped and the function will return 0, which is an integer.
If the array is not empty, then the first assignment to s will promote the type to
a floating point number, making s now a float. This is one of the issues with a
dynamically typed language, the types of the variables are allowed to change. We
can fix this error and see how it affects the benchmark.

In this example, the fix is very easy, since we can use the zero and eltype
functions. These are usually compiled away into constants when the function
is compiled, since Julia knows the type of the input at runtime due to multiple
dispatch and Just-in-Time compilation. The fixed example is shown in Algo-
rithm 6.20.
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function example type stable fn(x) Algorithm 6.20. An example of
s = zero( eltype (XY) B a type unstable function, which
for x i in x sums all the elements in the array
- : X.
s += x_1
end
s

end

First, we notice that any red flags from the code_warntype macro (the union
types) have disappeared:

julia> @code warntype example type stable fn(x)
MethodInstance for Main.WeaveSandBox0.example type stable fn(::Vector{Int64})

from example _type stable fn(x) in Main.WeaveSandBox0 at /nfsshare/home/ppyjml3/dev/fictional-computing-
Arguments

#self#::Core.Const(Main.WeaveSandBox0.example type stable fn)

x::Vector{Int64}

Locals
@ 3::UNION{NOTHING, TUPLE{INT64, INT64}}
s::Int64
X i::Int64
Body::Int64
1 — %1 = Main.WeaveSandBox0.eltype(x)::Core.Const(Int64)
(s = Main.WeaveSandBox0.zero(%1))
%3 = x::Vector{Int64}
(@ 3 = Base.iterate(%3))
%5 = (@ 3 === nothing)::Bool
%6 = Base.not int(%5)::Bool

L goto #4 if not %6

2 - %8 =@ 3::Tuple{Int64, Int64}
(x_ i = Core.getfield(%8, 1))

%10 = Core.getfield(%8, 2)::Int64
(s = s + x 1)
(@ 3 = Base.iterate(%3, %10))

%13 = (@ 3 === nothing)::Bool

%14 = Base.not int(%13)::Bool

— goto #4 if not %14

— goto #2

return s

> W

Now we can propagate this fix onto the outer function.
Now, let’s benchmark:



function calc summary stable(rows)
return sum(example_type stable fn, rows)
end

julia> @benchmark calc_summary($rows)
BenchmarkTools.Trial: 10000 samples with 337 evaluations.
Range (min .. max): 263.831 ns .. 441.976 ns P GC (min .. max): 0.00%

Time (median): 281.015 ns . GC (median): 0.00%
Time (mean + o): 282.294 ns + 5.236 ns | GC (mean = o): 0.00%
_‘_ =

e et . &
264 ns Histogram: frequency by time 297 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

julia> @benchmark calc_summary stable($rows)

BenchmarkTools.Trial: 10000 samples with 343 evaluations.

Range (min .. max): 254.834 ns .. 373.956 ns | GC (min .. max): 0.00

Time (median): 263.653 ns GC (median): 0.00%

Time (mean % o0): 264.754 ns + 4.822 ns | GC (mean % o): 0.00%
wliilite..

e -

255 ns Histogram: frequency by time 286 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

This performance difference is not huge on the most recent versions of Julia,
but can be significant if the type instabilities are large unions, or worse, of type
Any. Recent work on the Julia compiler has introduction union splitting which
drastically improves the performance of type unstable code provided the unions
are small.

Exercise 6.1. Install a previous, older, version of Julia (via juliaup)and bench-
mark how these implementations differ over Julia development. Show these
changes graphically over time.

Making our code type stable also ensures our code is very generic and reusable
across many types of numbers. In general, it is a good idea to avoid constants
in your code, and instead use the zero, one, eltype and typeof functions to
construct your constants. One will frequently see this practice used throughout
this book, for this reason of performance.

° o° o°
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Algorithm 6.21. Using the fixed
type stable function to perform the
map reduce operation.
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Type stability is much broader topic with many nuances. If you are experiencing
poor performance, it is often a good idea to check whether your functions are
actually type stable, using the code_warntype macro.

6.7.1 Barriers

There are some occasions when you cannot predict the type being returned from
a function, which leads to type instability. There are still some tools one can use
to mitigate the performance hits of this. The antidote to this problem is to break
up larger functions into several smaller functions, which act as type barriers so
that performance critical parts of your code are not affected, while giving you the
required flexibility.

Let’s take the example of using an array to store parameters which are used
within a function:

function params_in array test(x)

a 0

b 1

for i 1:100
C x[1] a
d x[2] b
a, b c, d

end

return a, b
end

This function works with the input x=[2.0, 1]. However, this is because the
type of the input is stable:

julia> x [2.0, 1]

2-element Vector{Float64}:

2.0

1.0

julia> @btime params_in array test($x)
419.548 ns (0 allocations: 0 bytes)

(200.0, 1.0)

The compiler has ““promoted” the integer - 1 - to a floating point number, so
that the numbers in the array can match. Now;, let’s imagine that we add another
parameter to this array, which is of a different type:



julia> x [2.0, 1, "third"]
3-element Vector{Any}:
2.0
1
"third"
julia> @btime params_in_array test($x)
3.425 ps (201 allocations: 3.16 KiB)
(200.0, 1.0)

Now, even though the two parts of the x array are unchanged, all we did was
add a third parameter, we suddenly have around a 17 times decrease in speed!
This is because x now has to be an array of type Any, which means that the compiler
no longer knows how many bits to reserve when processing elements of the array.
It first has to check how much space is needed, and then allocate that space. This
must be done on the heap, because the size is unknown at compile time. Having
to chase pointers to find the actual data makes this code incredibly slow.

We can remedy this hit, without changing the input types, or the function
signature at all. We can do this by refactoring our function and using a barrier
function:

function params in array test loop(xl, x2, a, b)
for i = 1:100

C x1l+a
d=x2/b
a, b=c¢c, d
end
return a, b
end
function params in array test with barrier(x)
a 0
b=1

return params_in_array test loop(x[1], x[2], a, b)
end

This re-factor amounted to simply a copy and paste and a few renames. How-
ever, if we now benchmark the performance on the same input as before:

julia> @btime params _in array test with barrier($x)
460.680 ns (1 allocation: 32 bytes)
(200.0, 1.0)
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Algorithm 6.22. This is an example
of a barrier function, which refac-
tors the inner loop of the main
body into a separate function with
named arguments, instead of in-
dexing the array x. This makes
sure that the bulk of the processing
can occur in a type stable manner,
avoiding the performance hit when
it is not possible to completely re-
move type instabilities.
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This is not a perfect solution, as we had to perform a dynamic dispatch.
A dynamic dispatch happens when the compiler cannot infer which method
of a function should be called based on the input types of a function. When
params_in_array_test_with_barrier is compiled, the inner function call can-
not be compiled as the types of the inputs are not known. Instead, the compiler
will dynamically look up the most specific method at run-time (i.e. dynamically
dispatching to the correct method). Dynamic dispatch can be a useful tool when
you have no other choice, but if occurring in the hot loop of your code, can be
a source of performance loss. Note that the allocation in the benchmark is due
to not knowing the return type ahead of time and hence needing to allocate the
result on the heap.

Looking at Section 6.6, it may be tempting to remove functions calls, as it
shows that they can be relatively expensive. However, we do not need to worry
about in Julia, as the compiler can always inline the function if it will improve
performance, which increases runtime performance at the cost of a longer compile
time. The lesson to take from this is that it is more important to write readable
and maintainable code, than to worry about performance, since Julia’s compiler
will usually be able to fix most performance problems that arise from refactoring
your code into smaller functions.

6.7.2  Type Inference and Branching

Taking a look at Section 6.6, branching (using an if statement) can be expensive
if the compiler mispredicts the correct branch. However, if one writes branches
conditions as a function of compiler constants - which usually include the types
of variables - one can always predict the correct branch, and even compile away
the branch. As a quick example:

function branch predict with types(x)
if x isa Int
return x 2
elseif x isa AbstractFloat
return (x-1.0) 2
else
return Nothing
end
end

Algorithm 6.23. An example func-
tion that will compile away the
branches as they can be evaluated
at compile time.



The above function would normally seem expensive as it has to do a branching
operation. However, Julia will compile away the branch information, since at
compile time it usually can infer the type of the input x. Do not be afraid to branch
based on type, as this will have little to no effect on performance®. However,
usually this type of branching is better done using multiple dispatch, so consider
alternative patterns.

This type inference at compile type is also why using the typeof function
involves little penalty.

6.7.3 Using composite types

In Julia, there are no classes. However, one can define one’s own composite
types. By a composite type, we specifically mean a type that is made up of a
composition of other types. In Julia, we call this object a struct. By default,
structs are immutable.
Structs are a common place that people introduce type instability, and let us

explore why. Take the example of defining one’s own complex number:
struct MyComplex

real

imag
end

One can even start to define some methods on this type to make it useful:

(a::MyComplex, b::MyComplex) MyComplex(a.real b.real, a.imag
(a::MyComplex, b::Number) MyComplex(a.real b, a.imag)
(a::MyComplex, b::Number) MyComplex(a.real b, a.imag b)

# ... add all other operations

However, this type is not type stable. When we defined the type previously,
we implicitly labelled both the real and imag variables as type Any:
struct MyComplex
real::Any
imag: :Any
end

This now means that this type must be heap allocated, since the variables can
be any type and hence any size. Additionally, the type of the variables cannot be
inferred at compile time and so this object will have terrible performance. We can
fix this, by specifying a type:
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¢ Provided that your function is
type stable and the type is actu-
ally known at compile time and
does not need to be dynamically
checked.

b.imag)
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struct MyComplex
real::Float64
imag::Float64
end

However now, this type will only work with type Float64. Instead, we can
use a feature of Julia called generics, which allows us to specify the type of the
parameters inside a struct:

struct MyComplex{T}
real::T
imag::T

end

The main difference here, is that the real and imaginary parts are forced to
be the same type. Subtly, this has created multiple definitions of the struct, one
for each type of the real and imaginary parts. These types can still be of type
Any though, and should likely be restricted. This can be done with the following
syntax:

struct MyComplex{T<:Number}
real::T
imag::T

end

If one writes the method functions on this type generally, it will not matter
if you have two complex numbers, one with integers and the other with floats,
since the compiler should know how to promote the types.

If you have a performance critical struct, make sure that the types are well-
defined. If the struct is a collection of numeric or, more generally, “isbitstype”
types, the resulting composition will also be an “isbitstype” type and hence
allowed to be stack allocated. Additionally, making a struct mutable, will make
the object heap allocated, which can hurt performance.

6.8 Constant Propagation

We have already seen that some code can get compiled away if all the constants
are known at compile time. Take the following example:
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julia> compiled fn() = sum(1:1000);
julia> @code typed compiled fn()

CodeInfo(
1 - return 500500
) => Int64

One can see that the actual code simply returns the constant value which was
calculated. The code never actually performs the sum at runtime, since it can be
precomputed at compile time. This opens up a whole new world of possibilities.
If you can give the compiler information about constants during compile time, it
can propagate that information forwards to avoid costly computations down the
line.

Let’s take the following example, taking from a real world problem involving
cellular automata, shown in Algorithm 6.24. This code is quite complicated, per-

function dynamics rule 150 no val(u, N)
unit = one(typeof(u))
mask (~zero(typeof(u)) N)
u_left (u 1) ((u (unit (N-1))) (N-1))
u right (u 1) ((u & unit) (N-1))
return (xor(xor(u_ left, u), u_right) mask)
end

forming many bitwise operations on the input u. The specifics of the calculation
are not very important here, you should just notice that the mask variable calcu-
lated using the variable N. This is one additional calculation that does not need
to be performed if N is constant. However, we want our code to be able to work
with different values of N7. We want to introduce the variable N as a compile-time
constant, but allowing the function to be used with different values of N.

How can we achieve this? The answer is by taking advantage of Julia’s type
system. Since the type information is available to the compiler, we can simply
insert the value of N into some type information. There is a special type in Julia
called Val which allows us to insert data into the type information. For example
we can construct an object with the number 5 in the type:

julia> Val(5)
Val{5}()

Algorithm 6.24. An example tak-
ing from a program that calculates
cellular automata updates to a 1D
array of spin ! particles.

7 N is the number of particles in the
spin chain.



124 CHAPTER 6. OPTIMISING SERIAL CODE

function dynamics rule 150 with val(u, ::Val{N}) where {N} Algorithm 6.25. An example tak-
T — one(tyBeof(G)) - - ing from a program that calculates
mask = ~(~zero(typeof(u)) << N) cellular automata updates to a 1D
= ~(= oma \ _
u left = (u << 1) | ((u& (unit << (N-1))) >> (N-1)) array of spin ; particles, but us

u right = (u >> 1) | ((u & unit) << (N-1))

ing a compile time constant N, pro-
vided in the type information.
return (xor(xor(u_left, u), u right) & mask)
end

Notice the {5} which shows this is the type information. We can extract that
information using a generic function definition:
We can benchmark the two functions to see the difference:

julia> u = rand(Int)

4763098327049107497
julia> N = 32
32

julia> @benchmark dynamics rule 150 no val($u, $N)
BenchmarkTools.Trial: 10000 samples with 1000 evaluations.

Range (min .. max): 3.416 ns .. 7.404 ns . GC (min .. max): 0.00% .. 0.00%
Time (median): 3.476 ns i GC (median): 0.00%

Time (mean % 0): 3.486 ns + 0.137 ns GC (mean %= ¢): 0.00% + 0.00%
|
=t -
3.42 ns Histogram: frequency by time 4.26 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark dynamics rule 150 with val(s$u, $(Val(N)))
BenchmarkTools.Trial: 10000 samples with 1000 evaluations.
Range (min .. max): 2.043 ns .. 10.260 ns | GC (min .. max): 0.00% .. 0.00%
Time (median): 2.074 ns i GC (median): 0.00%
Time (mean % 0): 2.082 ns + 0.118 ns | GC (mean = o): 0.00% + 0.00%
_u = A 1.
wll | | | |
2.04 ns Histogram: log(frequency) by time 2.08 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

Comparing the minimum times here, we have about a 50% speed-up by pre-
computing the mask (and also the N — 1 values). Note that we could precompute
the mask and pass this in manually, but this makes the code much more verbose.
Instead, making use of the Val type can save a lot of time and effort.

As an alternative to this, we can also instruct the Julia compiler to propagate
some constants through function definitions when compiling. An example on the



Julia Discourse forum® shows some allocation differences when separating out
your code into separate functions:

function compute!(r, a, b, p, s)
mul!(r, a, b, s, p)
mul!(r, b, a, -s, true)
return nothing

end

function calling fn(r, a, b)
p false
S 2.0
compute!(r, a, b, p, s)

end

function manual inlining fn(r, a, b)
p false
S 2.0
mul!(r, a, b, s, p)
mul!(r, b, a, -s, true)
nothing

end

The two functions are identical in which operations are performed, but one
allocates and the other does not. The main reason for this is that the constants
p and s do not automatically get propagated through the function barrier of
compute!. Fortunately, instead of having to resort to using Val in our function
definitions, we can instead use a macro from the Base library to encourage the
compiler to propagate our constants through a function barrier:
Base.@constprop :aggressive function compute!(r, a, b, p, s)

mul!(r, a, b, s, p)
mul!(r, b, a, -s, true)

return nothing
end

The Base.@constprop can be used if you notice that refactoring your code
leads to allocations that you do not understand.

6.9 Inlining

If a function is short enough, one can encourage the compiler to always inline the
function so that at runtime, one does not have to pay the cost of calling another
function. This can be done in Julia using the @inline macro:
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8https://discourse. julialang
.org - the main place to ask Julia
related questions. This has a much
bigger community than Stack Over-
flow for the language.


https://discourse.julialang.org
https://discourse.julialang.org
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@inline function +(a::MyComplex, b::MyComplex)
MyComplex(a.real b.real, a.imag b.imag)
end

This makes sure that everywhere the addition function between two complex
numbers is used, the code will be inlined. We should note that the compiler will
inline your code for you, and using the @inline macro is only a suggestion to the
compiler. Most of the time this is not necessary.

6.10 Generated Functions

We have not covered Julia’s amazing meta-programming capabilities, other than
showing the use of a few macros. Remember that meta-programming is writing
code that will write other code. We are not covering this in detail, but this is a very
short overview just in case you come into contact with these concepts in the wild.
It is very rare that you need to use these facilities, as they are often just syntactic
sugar to help code expressibility and reuse, without sacrificing performance.

One special way of creating a function is by using a generated function, with
uses the types of the inputs to change how the code is written. Let’s give a very
basic example of creating a function which evaluates a polynomial, taken from
the Julia base library:

@generated function my evalpoly(x, p::Tuple)
N length(p.parameters::Core.SimpleVector)
ex (plend])
for i in N-1:-1:1
ex (muladd(x, $ex, pl[$il))
end
ex
end

This is meta-programming, as we have written code which generates an ex-
pression, which then becomes the function that is evaluated. Here, we are saying
that if the coefficients of the polynomial are given in a tuple (whose size is known
at compile time), then we construct a nested expression. When this function is
compiled, it will generate another function that is used in place of this generated
function. We can call this function as expected:

Algorithm 6.26. This function
is taken from the Base Julia li-
brary. Given parameters in a tu-
ple p, the polynomial p; + pox +
p3x2 4+ pux" 1 will be evaluated.
This function is a generated func-
tion which changes the expression
based on the input tuple (and it’s
length).
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julia> x = 5.0;

julia> p = (1.0, -2.0, 5.0);

julia> @benchmark my evalpoly($x, $p)
BenchmarkTools.Trial: 10000 samples with 1000 evaluations.

Range (min .. max): 2.053 ns .. 6.553 ns | GC (min .. max): 0.00% .. 0.00%

Time (median): 2.084 ns i GC (median): 0.00%

Time (mean = o): 2.085 ns + 0.101 ns | GC (mean = ¢): 0.00% = 0.00%
_ [ |

2.05 ns Histogram: frequency by time 2.08 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

We can inspect the lowered code using the @code typed macro:

julia> @code typed my evalpoly(x, p)

CodeInfo(

1 — %1 = Base.getfield(p, 3, true)::Float64

%2 = Base.getfield(p, 2, true)::Float64
Base.muladd float(x, %1, %2)::Float64
Base.getfield(p, 1, true)::Float64
Base.muladd float(x, %3, %4)::Float64
return %5

) => Float64

o® of
W
Inn

o°
(8]
1]

—

Notice that we only have a few multiply add expressions. Compare this to a
naive implementation:

function my evalpoly simple(x, p) Algorithm 6.27. Same as Algo-
N = length(p) rithm 6.26., but not using a gener-
ated function.

s = plend]
for i in N-1:-1:1
s = muladd(x, s, pl[il)
end
s
end

We can benchmark this to see that the performance is pretty much the same,
as the compiler is smart enough to be able to unroll the loop:

julia> @benchmark my evalpoly simple($x, $p)

BenchmarkTools.Trial: 10000 samples with 1000 evaluations.
Range (min .. max): 2.053 ns .. 5.931 ns | GC (min .. max): 0.00% .. 0.00%
Time (median): 2.084 ns i GC (median): 0.00

)
o
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Time (mean * 0): 2.083 ns + 0.094 ns | GC (mean = o0): 0.00% + 0.00%

= i
- - | | .
2.05 ns Histogram: frequency by time 2.08 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

This is another case of pre-emptive optimisation, assuming that the compiler
is not smart enough to generate the most appropriate, and performant, machine
code. In older versions of Julia, this optimisation could be very important. How-
ever, usually it is not worth it to write these complicated generated functions,
unless you know what you are doing.

6.10.1 Performance Annotations
6.10.2 Fast Math

We can allow the compiler to include floating point optimisations that are correct
for real numbers, but may lead to differences for IEEE encoded floats. These may
change numerical results and accuracy, but may improve the performance of your
code. This is enabled via the @fastmath macro in Julia:

function nofastmath example!(y, Xx)
@inbounds for i in eachindex(y, x)
y[i] = sin(x[i])
end
nothing
end
function fastmath example!(y, x)
@inbounds @fastmath for i in eachindex(y, x)
yl[i] = sin(x[i])
end
nothing
end

We can benchmark these two algorithms:

julia> x = rand(1024); y = similar(x);

julia> @benchmark nofastmath_example! ($y, $x)

BenchmarkTools.Trial: 10000 samples with 8 evaluations.

Range (min .. max): 3.333 ps .. 4.199 ps | GC (min .. max): 0.0
0.0

Time (median): 3.412 ps GC (median):

o°

0
0

o°

Algorithm 6.28. An example of
two algorithms, which only differ
by the use of @fastmath macro.

. 0.00%



Time (mean % 0): 3.432 ps = 82.281 ns

i
_ —anil -
3.33 us Histogram: frequency by time 3.85 us <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark fastmath_example! ($y, $x)
BenchmarkTools.Trial: 10000 samples with 8 evaluations.

Range (min .. max): 3.223 ps .. 11.929 us ' GC (min .. max): 0.00%
Time (median): 3.313 ps i GC (median): 0.00%
Time (mean % o0): 3.331 ps * 155.207 ns | GC (mean %= o): 0.00%
=il -
N s e et e e et e B e
3.22 us Histogram: log(frequency) by time 3.73 ps <

Memory estimate: 0 bytes, allocs estimate: 0.

We can see that the @fastmath example is slightly faster. These operations can
violate strict IEEE semantics, making some operations undefined behaviour. For
this reason, it is often avoided in many scientific applications and is an opt-in
performance enhancement.

6.10.3 Bounds Checking

We have already seen the use of the @inbounds macro throughout this book. This
is one of the easiest optimisations to make, as long as you are confident that you
are accessing memory in a correct way. Turning off bounds checking and accessing
incorrect areas of memory may lead to undefined behaviour, memory corruption
and crashes. This can be mitigated by proper use of methods like eachindex or
axes.

6.11 Conclusion

Optimisation is a very broad topic, and we are only able to cover the introduction
to this topic here. Many of the tips discussed in this chapter are applicable to
other languages. Many tips specific to Julia are given in the ““Performance Tips”
section of the Julia manual®, which are certainly worth reading, but the main
points are included in this chapter.
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GC (mean = 0): 0.00% = 0.00%

9https://docs. julialang.org
/en/vl/manual/performance-tip
s/


https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/performance-tips/
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We have opted not to talk about specific optimisations by using the correct
algorithm for a task, as this is often too specific to a certain problem. Instead, it
should be your responsibility as the developer to choose the appropriate algo-
rithm for the job. You can then use the techniques in this chapter to make your
implementation of that algorithm as performant as possible, using a single core.

When writing high performance code, it is imperative that you first optimise
the existing code as described in this chapter, before moving onto optimising via
parallelism. The next few chapters will cover the basics of parallelism over the
main paradigms available to programmers today. It is important to remember
that the main source of speed up comes from optimising the serial version of your
code, and these benefits can often be compounded by using the right parallel
paradigm to further speed up the execution of your code.



7 Introduction to Parallel Programming

Now that we have gained an understanding of how to write fast code in Julia, or
more accurately - how to avoid writing slow performing code in Julia, we can
move onto to trying to utilise modern hardware to accelerate our software.

Figure 7.1. Shows the trends
of CPUs over time. Notice that
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ery two years, as Moore pre-
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Over the past few decades, single-core performance has not been improving
at the rate it once was. We can see this in Figure 7.1, as it clearly shows this
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performance stagnating, along with clock speed frequency. Now, the way that

manufacturers have sought to increase the performance of their chips, was simply

to add more cores to a single CPU, you can see this trend beginning in the mid 00’s.

While each core might only be 10% faster than the last generation, it may now have

twice as many cores, and theoretically, able to at least double the performance,

given the right task and software. Now, some manufacturers are able to fit 128

cores onto a single chip. Additionally, some motherboards are dual socket, which

means they can fit two CPUs and have twice the number of cores available.

While in theory, one can increase the amount of computational power available,

there are quite a few challenges:

Some tasks are inherently sequential, and cannot be divided up amongst
multiple cores and are limited to sequential processing. An example of this
is in a Physics engine, where one has to work out the current state of the
simulation before being able to calculate the next state. While the forces can
often be calculated in parallel, each distinct step relies on the previous step
and has to be done in sequence.

Developers need to write the code in such a way that it can efficiently utilise
multiple cores, while working across many different computers and architec-
tures. This adds a lot of complexity to the code base and requires a much higher
level of expertise, let alone the increased amount of testing required to ensure
the software performs as expected. Many applications today under-utilise the
hardware due to this increased burden on the developers.

In order to parallelise the code correctly, the algorithms can be completely
different, requiring huge amounts of developer time to rewrite and test these
new algorithms. This process is fraught with bugs which make software less
reliable. Reliability is often preferred over speed, and so parallelising code is
often overlooked.

If done incorrectly, parallelised code can often be slower than the serial alter-
native. It is important to know when to parallelise and when not to.

This chapter will aim at exploring these challenges and give you the theoretical

tools to understand the framework of parallelisation.
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7.1 Dependency Graphs

In order to be able to parallelise, we first need to formalise how to describe a

process that benefits from parallelism. It is easy to build up an intuition of this.

Firstly, let’s define what a worker is:

In the context of parallelisation, a worker is an entity which can process information
and perform certain tasks.

Purposefully, we have kept this notion as abstract as possible. When thinking
about algorithms in an abstract sense, it is often useful to imagine the process
being performed by hand, and humans filling the role of the worker. While an
algorithm, when implemented on a computer, will be executed by a CPU, it is
possible that each core will act like a separate worker. We will often talk about
a worker as if they are a human with agency, but this is only for illustration
purposes.

We can imagine breaking up a large task into many smaller tasks. A convenient
way to organise these subtasks is in a hierarchy, in which tasks at the top do
not depend on any other tasks. Moving down the hierarchy, tasks depend on
the competition of tasks higher in the hierarchy. This structure is often seen in
a tree-like structure. Let’s take a trivial example of a simple stir-fry recipe to
illustrate the point:

1. Slice chicken/protein into thin strips.

2. Julienne (slide into strips) an onion.

3. Julienne a bell pepper.

4. Mince Garlic.

5. Peel and grate ginger.

6. Cook the rice according to instruction.

7. Pre-heat a wok to high heat.

8. Add half oil for frying.

9. Brown protein in the wok, stirring frequently.

10. Remove protein on a plate when slightly browned.

133



134 CHAPTER 7. INTRODUCTION TO PARALLEL PROGRAMMING

11. Add onion to the wok and fry until slightly browned.
12. Add garlic, ginger and pepper.

13. Add in the cooked protein (with seasoning and soy sauce) and cook for a
couple of minutes.

14. Serve the stir-fry on the bed of cooked rice.

This recipe has many items, but we can draw a diagram of the process. In order
to trace dependencies, it is often easiest to go to the last item in the task and work
backwards for what is needed. We can draw this process in a dependency graph,

shown in Figure 7.2.
Pepper Ginger

Brown
onions

Fry Onions and
Vegetables

Fry protein with
seasoning and veg

Combine rice and
stir fry

Notice how all the tasks in the top row can theoretically be done at the same
time. Obviously, we are ignoring the restriction that food loses heat once cooked,
and so cooking tasks should only be completed ““Just-in-Time”. If we had enough
resources (enough workers, knives and equipment), we could have one worker
cutting an onion while another cuts a bell pepper. Notice how in doing this, we
have not only increased the number of people needed, but we have also increased
the resources required (one knife to two knives). Additionally, what is not obvious
from the recipe, is that given two woks and two people, we could brown the
chicken and the onions at the same time in each wok. This is because they are not
inherently dependent on each other. If we only had a single wok, then suddenly,

Figure 7.2. This is a dependency
graph depiction of making a basic
stir-fry. Arrows going into a task
show a dependency on the task at
the origin of the arrow. This type of
graph roughly shows the necessary
temporal aspect of a task.
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browning the onions would depend on having already browned the chicken. If
the rice starts cooking at the beginning of the process, it will be ready and finished
by the time the rest of the meal has cooked, this process can happen in parallel
too. The important aspect of this diagram, is that we can visually group tasks by
which ones can be done in parallel. This gives us an idea of how to speed up the
process, given more workers and resources.

Imagine a kitchen of professional chefs, who work together on a single meal. If
managed correctly, this will usually speed up the process as some tasks can be
done in parallel. However, if each task in the preparation depends on the previous
task, then having all the additional resources and workers is not helpful, as only
one task can be completed at a time.

A dependency graph shows how a process can be parallelised, and which
resources are required at which points during processing. However, we have left
out any concept of time. We are not trying to solve a scheduling problem - which
inherently would involve knowing about the time taken to complete each task.
A dependency graph tells you only if a task can be parallelised, not whether it
should be, as there is not enough information to answer that question.

One may recognise a dependency graph as having similarities to a flowchart. A
flowchart encapsulates the logic of an algorithm, independent of implementation
details. One may use flowcharts with small tweaks to act as a dependency graph,
to visualise the structure of a task.

While a flowchart is visually very easy to understand, when talking about
dependency graphs we must remember that a dependency graph should
never have a cycle - i.e these graphs should be acyclic. These type of graphs
have a special name: Directed Acyclic Graph (DAG). While we may show
flowcharts with loops (as in a sort of for/while loop), each cycle of this is in-
herently dependent on the past as is only grouped into a cycle for illustration
purposes.

For clarity, let’s take a simple algorithm, written in Algorithm 7.1. This program
simply maps each input of an array to another value, which is stored in another
array that is preallocated.

If we label the number of elements in x and #, then we know that we are calling
the function inner solve n times, once for each of the elements. We know that
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function inner solve(x)
rate, limit, x = promote(0.01, 2.0, x)
for t in 1:100
x += ratefclamp(x, -limit, limit)
end
return x
end
function map_solve!(y, x)
@inbounds for i in eachindex(x, y)
y[i]l = _inner_solve(x[i])
end
nothing
end

processing the inner loop requires loading the i element of the array x, and
then processing this value in another function and finally storing the output in
an array.

We can see a representative dependency graph in Figure 7.3. Firstly, we can
see that processing one element of the inner loop, first requires that we have
a pointer to the array x. We can see that each evaluation of the inner loop is
independent of all other inner loop evaluations. Another way of saying this is
that these inner operations can safely be done in any order without changing the
final result. Finally, once all the processes in the inner loop have completed, then
the algorithm is complete.

Input array of
elementsin x

Apply_inner_fto Apply_inner_fto Apply_inner_fto

element x[1] element x([i] element x[n]

Storeresults in y

For clarity, the diagram of the inner loop has been included in Figure 7.4.
Note that this graph does not have any independent processes and so cannot be

Algorithm 7.1. An example func-
tion which calculates an expensive
operation over an array of elements
and stores the results in a preallo-
cated array. The function promote
is used to make sure the com-
piler converts the constants into
the same, compatible, types dur-
ing compilation, ensuring that no
type conversion happens at run-
time. It also allows us to name the
variables.

Figure 7.3. This diagram shows a
flow chart like DAG. This shows
the processing dependencies be-
tween each part of the program. As
the graph is directed and there ex-
ist no connections between each of
the blue processing steps, we can
conclude that these processes do
not overlap with data and hence
can be processed at the same time.
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parallelised. We can roll this process into a single processing step as shown in
Figure 7.3.

Load x[i] into
variable k

Increment t

Set k=k+ rclamp(k, -1, 1)

What is important to see is that each evaluation of the inside of the loop is
completely independent of all other processing. This means that it is safe for us to
work on multiple inner loop evaluations at the same time - processed in parallel.
This type of parallelism is extremely common and has a name - embarrassingly
parallel. There are many problems that fit into this category, and thankfully, are
the easiest to deal with.

7.2 Theoretical Expectations

7.2.1  Amdahl’s Law

Let’s benchmark the algorithm from the previous section (Algorithm 7.1) with
an array of 1024 numbers:

julia> x = rand(1024);
julia> y = similar(x);
julia> @btime _inner_solve($(x[11))
170.529 ns (0 allocations: 0 bytes)
2.481729241528297
julia> @benchmark map_solve! ($y, $x)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min .. max): 175.657 us .. 242.796 us i GC (min .. max):
Time (median): 176.660 us i GC (median):

o°

0.00
0.00

o°
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Figure 7.4. This shows the ex-
panded dependency graph for the
blue processes in Figure 7.3. While
this graph clearly contains a cycle
in the while loop block, it is possi-
ble to unroll this loop into a DAG
like structure, since the loop is fi-
nite and eventually ends. This pro-
cess has been depicted in this way
for convenience, but one should
think of this as being unrolled in
terms of dependencies. It is clear
that each subsequent result of k re-
quires the result of the previous it-
eration. Unlike the process in Fig-
ure 7.3, this process cannot be par-
allelised, as each block is depen-
dent on the last.

. 0.00%
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Time (mean * 0): 177.159 ps = 1.834 us GC (mean + o): 0.00%

[ [ . - _ _
(_ee—- - - 5 W
176 ps Histogram: log(frequency) by time 184 us <

Memory estimate: 0 bytes, allocs estimate: 0.

We can see that the processing scales linearly with the size of the array. If we
had 1000 processors, we could theoretically speed up this function call, by having
each processor calculate the inner loop for each element and put the result in the
final array. However, we would still have to spend the 210 nanoseconds required
to process a single element. This brings up the concept of Amdahl’s law*, which
states:

1
(1-p)+2

where § is the speed-up factor, p is the proportion of the program which can

S (7.2)

be parallelised, and s is the speed-up of the part of the task that is parallelisable.
We can interpret the (1 — p) factor as the proportion of the program which cannot
be improved.

Amdahl’s Law tells us the theoretically maximum speed-up we can achieve by
parallelising part of our program. In our example, we can know that p = 1 as all
N tasks can be done in parallel. However, the speed-up factor is not as trivial. We

know that each worker can process one element at a time, and so the minimum

N |2
o |

If we put these equations together, we will see that an embarrassingly parallel

amount of time needed is proportional to {

problem (where each element takes the same amount of time) will have a speed-
up given by

5=+, (72)
]

If we take the limit as N — oo, we know that [%—‘ = % and hence S = w, which
is what is expected.

Let’s say that we also need to read in the x data from the disk, which takes
around 1us per element and must be done sequentially. If the operation on each

element takes 200ns, then the factor p changes to ngjggs = 0.2. This will change

“https://en.wikipedia.org/wik
i/Amdah1%27s_law

2 [-] represents the ceiling function,
which rounds up to the nearest in-
teger. For example, [3.2] = 4, but
[3]=3


https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
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our maximum speed-up:
1
5= T (73)

w

If we take limits as N — oo and assume we have unlimited resources (i.e w — o),
then the maximum speed-up is 1.25. This shows us that no matter how many
resources we have, if the sequential part of an algorithm takes much longer than
the part which can be parallelised then we are severely limited in how much we
can speed-up a task.

7.2.2  Embarrassingly Parallel Problems

For our practical example, we need to know the number of workers we have
available. We can see the number of processors available with the built-in function

julia> Threads.nthreads()
16

If this is set to 1, you most likely have to start Julia with more threads. It
is common to set the number of threads to the number of physical cores
available on your processor. You can use julia -t auto to start Julia with
the number of threads equal to the number of logical processors. Due to
Simultaneous Multithreading (SMT) this can be double the number of your
actual physical cores.

Let’s quickly implemented a parallel version of our algorithm using multi-
threading. We will discuss this in more detail later. In Julia, one can perform tasks
in parallel by simply adding a macro on the beginning of a for loop:

function map_solve parallel!(y, x)
@inbounds Threads.@threads for i in eachindex(x, y)
yli] _inner_solve(x[il])
end
nothing
end

We can benchmark this algorithm the same as before:

Algorithm 7.2. Same as Al-
gorithm 7.1, but using the
Threads.@threads macro in the
Julia base library. Note that the
@inbounds is not required, but
speeds up performance.
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julia> @benchmark map_solve parallel! ($y, $x)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min .. max): 23.505 ps .. 119.159 ps GC (min .. max): 0.0
Time (median): 37.627 us GC (median): 0.00%
Time (mean * 0): 39.818 us = 9.371 pys i GC (mean + o0): 0.00%
- e
e e . ®

23.5 pus Histogram: frequency by time 66.7 ps <
Memory estimate: 8.42 KiB, allocs estimate: 97.

Notice how the number of allocations has increased. This is because the thread-
ing macro rewrites your code an inserts some heap allocations. However, the
performance of this algorithm is much better, around 6 — 7 times faster. This is
lower than our theoretical maximum for many reasons. The first of which is that
running code in parallel requires a lot of overhead and synchronisation to happen
across the cores. The second reason is that each core may access the same cache
line in memory, and even worse, each core can be modifying the same cache line,
invalidating it and causing a huge slowdown. This is what is known as false
sharing. Additionally, the memory access is not uniform and the compiler cannot
vectorise the code, negatively impacting performance. We will visit better ways
of parallelising this sort of algorithm in a later chapter.

7.2.3 Gustafson’s Law

In the previous section, we talked about the theoretical maximum speed-up of
an algorithm, given some amount of resources. However, this law does not give
the entire picture. Today, many engineers and scientists are more interested in
scaling up algorithms to bigger input sizes, and seeing how parallelisation scales
with the problem size.

Gustafson’s Law states that the estimated speed-up of a program gained by
using parallel computing is given by:

S=(1-p)+pN, (7-4)

where N is the number of available workers (or processors) and p is the fraction
of time spend executing the parallel parts of the program. S represents the theo-
retical slowdown of executing an already parallelised algorithm on a serial-only
machine. This law proposes that engineers and scientists tend to increase the size
of problems to fully exploit the computing power that is available on workloads
of increasing size. Another way that people look at this, is asking

0% .. 0.00

+ 0.00



7.3. MAPS AND REDUCTIONS

If a task, quantified by a workload size of w(n), takes x amount of resources and ¢
time to complete, then given y amount of resources, what size, n’ can be scaled up
to, resulting in the same competition time.

An example from the Wikipedia article on Gustafson’s Law gives the example of
an operating system’s boot-time. If a user is okay to wait 30 seconds for a computer
to boot-up, and we have additional resources, which additional features and tasks
can be done during boot, making sure that the boot time is not increased?

7.3 Maps and Reductions

The example given in Algorithm 7.1 is the essence of what we call a map. This is a
term widely used in functional programming. Essentially a map, simply applies
the same operation (or function) to all inputs. It is an extension of SIMD (Single
Instruction Multiple Data). This form of action is ““embarrassingly parallel”. In
Julia, whenever we use the broadcast operator, we are applying a map:

julia> x [1,2,3,4]1;
julia> is_odd(x) X 2;
julia> is odd. (x)
4-element Vector{Int64}:
1

ol E o]

Here, we have mapped the is_odd function to each element of the input array
and then returned the output of that array.

Mapping is a very useful concept, especially since it can be so elegantly ex-
pressed in Julia, however, what happens when we need to combine elements
together. For example, if we want to sum all the elements in an array? Tradition-
ally, we have a variable to keep track over the total sum, initialised at zero, and
then iterate over all the elements, adding each element to the sum. This sort of
operation is called a reduction, aptly named for the effect of producing an output
with fewer terms than the input - i.e. reducing a collection to a single element.

Let us take the example of the sum function. The dependency graph of the serial
algorithm is shown in Figure 7.5. However, we know that addition is associative
(iea+ (b+c) = (a+b) + c), which means that we are free to rearrange the
order of additions, and transform the dependencies in a way that aids parallelism.
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However, inside a computer, numbers are represented with a finite amount of
bits. Provided there is no overflow with integers, the addition should still be
associative. However, floating point numbers are represented in standard form
notation, with a sign, mantissa and exponent. Necessarily, these representations
are limited and make approximations on most numbers. These approximations
lead to the loss of associativity in operations of floating point numbers. For this
reason, different implementations of the same sum of floating point numbers
may be slightly different.

A simple way of making the algorithm parallel, is to divide up the array into k
chucks, one for each worker, and have each worker serially reduce their chunk of
the array and then have a final step which combines the results of all k chunks
serially. Provided that the number of elements in the array is much larger than
the number of workers, this will be a very easy task to parallelise.

Another way is to fundamentally change the algorithm. We can assign two pairs
of numbers to each worker to add together. This will produce an intermediate
result with around half the number of elements in the initial array. From here,
the workers repeat the process, combining pairs of numbers, until there is only a
single number left. This algorithm actually has practical benefit when applied to a
sum reduction of elements of similar magnitude. This relates to the floating point
problem. Additions of floating points are most accurate when the exponents of
the floats are roughly equivalent (similarly sized numbers). If the exponents are
different, then the mantissa of one number needs to be manipulated to match the
magnitude before addition, propagating any errors resulting from finite bit size
forwards. This effect is magnified as the total sum variable gets larger and larger
compared to the elements in a sum, as the algorithm works through the elements.

This adapted algorithm, given enough resources, can vastly improve the paral-
lelism of a reduction. In the serial case, the algorithm scales as O(n), where n is
the number of elements in the array. However, in the parallel case, with enough
resources, the algorithm scales as O (log,()). This can be derived easily, since
each halving of the problem set can be computed in constant time (given enough
resources) and it takes proportionally log, (1) iterations to halve the initial n

t
elements down to 1. This is the solution to the equation (%) n=1

This is just a simple example of a reduction for a sum, but there are many
interesting and varied implementations, usually relying on associative (and also
commutative) properties of the underlying operations.

Figure 7.5. Shows a dependency
graph (and execution graph) of a
reduction (in the form of a sum),
on the numbers from 1 to 8. Some
steps have been excluded for clar-

ity.
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Julia provides default implementations for map and reduce functions. map
takes in a function and collection, and applies the function to each element in the
collection. For example, if we want to square all elements of a list and add 1 we
would write:

julia> x = LinRange(0, 1, 5);
julia> x2 = map(y->y*y + 1, x)
5-element Vector{Float64}:

1.0

.0625

.25

.5625

.0

N ===

Note that y->y*y + 1is an example of an anonymous function, these are fre-
quently used in Julia when following a more functional style such as the “map/re-
duce” format.

If we now want to find the product of this array, we can use the reduce method
with the multiplication operator:

julia> reduce(*, x2)
4.150390625

This reduction function takes in a two argument function and a collection. It
iterates over the collection, combining results until there is a single scalar result
left. It should be said that this will only return the correct answer if, and only if,
the function is commutative and associative.3

As it is extremely common to first map something and then apply a reduction,
a fused method is provided:
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Figure 7.6. Shows a dependency
graph of a binary, parallel, reduc-
tion algorithm, which sums the
numbers from 1 to 8. This is a
fundamentally different algorithm
from Figure 7.5, however, it is
equivalent under the assumption
that addition is associative, which
is true for integers, provided no
overflow.

31t should be noted that one can
use foldl and foldr much like the
reduce function but guaranteeing
left and right associativity respec-
tively.
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julia> mapreduce(y->y*y+1, *, x)
4.150390625

The first argument of this function is the mapping function, the second is the
reduction function and the third is the collection of elements this will be applied
to. We can benchmark the difference between these when put into a function.
julia> map_then reduce(x) = reduce(+, map(y->y*y+l, x));
julia> map and reduce(x) mapreduce(y->y*y+1l, +, X);
julia> x = rand(10_000);
julia> @btime map_then reduce($x)

5.218 ps (2 allocations: 78.17 KiB)

13333.840517953066
julia> @btime map_and reduce($x)

949.708 ns (0 allocations: 0 bytes)

13333.840517953066

Note that the reduction operation has been changed to a + for avoiding getting
an infinity overflow. One can see that the second fused algorithm is much more
efficient as one did not need to allocate an intermediate array for the map. It is
almost always better to use the fused version if you do not need the results of the
intermediate map.

7.4  Thread Safety and Race Conditions

You may have noticed something peculiar about the previous section, particularly
in Figure 7.6. This algorithm is broken up into different stages. What one may
notice, is that this structure is somewhat arbitrary. One can consider alternative
ways in which to break down the sum into pairwise operations. Why were the
pairs chosen adjacent, not in an arbitrary order? Another way to break down the
sum of 1 elements using k workers is to have each worker sum up | % | elements
(with one worker taking any left-over elements). As k < n (usually), one can
then assign one of the workers to sum the remaining k elements to produce a
final output. The reason we chose this process is to make sure that each worker
does not access the same memory at the same time.

Why is this so important? Let us inspect the following example:

Let’s run this code with an example:
julia> arr rand(1024);

julia> real _sum = sum(arr)
523.890365972938
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function naive parallel sum(arr)
sum_arr zero(eltype(arr))
@inbounds Threads.@threads for i in eachindex(arr)
sum_arr arr[il
end
return sum_arr
end

Now we know what to expect, let’s see what is returned from our sum.

julia> naive parallel sum(arr)
523.8903659729372

Now this result is different, let’s do a few runs to see if we get the same incorrect
result:

julia> naive parallel sum(arr)

134.89395395564378

julia> naive parallel sum(arr)

148.8939002174354

julia> naive parallel sum(arr)
128.58731755433683

Each time the sum is called, we get a different result. This is the quintessential
example of a race condition in our code. We only have one piece of memory, the
variable represented by sum_arr, which is being read from and written to by each
of our workers in parallel.

Each worker first reads the value of sum_arr and stores this value in a register
inside the Arithmetic Logic Unit (ALU) of the current worker. It then reads the
value from the input array which is read-only and does not change. Once these
two values are inside the ALU, their sum is calculated and then written into the
memory of the variable sum_arr. This whole process occurs in parallel, which
means that another worker may have changed the value in sum_arr while another
worker has an outdated value inside their ALU. Consequently, when the worker
with the old value has completed the calculation, it will overwrite the intermediate
result from the previous worker. For this reason, the final sum usually only
accounts for a much smaller number of elements since most contributions are
overwritten. We call this a race condition, since the behaviour of the algorithm
depends on the order and the speed of execution, each worker ““racing’” to read
and write to the same piece of memory.

Algorithm 7.3. A naive implemen-
tation of a parallel reduction. This
code should not be used without
modifications.
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This idea of race conditions overlaps with the idea of thread safety. A thread-
safe algorithm can be executed in parallel without introducing any race conditions.
An example of an algorithm which is often not thread-safe is a random number
generator (RNG), as these are usually all implemented as pseudo-random number
generators, which rely on an internal state to generate the next number in a
deterministic process that has good enough properties to mimic a random process,
while still being repeatable. If you parallelise a random process (e.g. a Monte-
Carlo simulation), you should make sure that the random number generation
algorithm is thread-safe, or the code may run into race conditions when the RNG
reads and mutates its internal state.

The golden rule for thread safety is to check whether multiple cores are ac-
cessing the same piece of memory at the same time. If this memory is constant
throughout the parallel process, this is usually fine (e.g. all cores have access to
your constant data). However, if each worker tries to write to the same piece of
memory, this causes a race condition.

7.4.1  Mitigating race conditions

As race-conditions are very common and can have very bad results, such as
memory corruption, one would like a way to have the benefits of parallel process-
ing, without having to alter the algorithm that much. Computer scientists and
software engineers have come up with ways to mitigate this happening.

Atomics:

One core concept to understand is the idea of afomics. An atomic operation is
one which cannot be broken up into smaller parts done by different processors.
An atomic operation must be executed serially or will break. The example from
the previous section included an example of an atomic operation - incrementing
a variable with another value. The one line of code -

sum_arr arr[il
- can be broken down into 4 distinct operations:
1. Fetching the value arr[i] and loading into register in the ALU#
2. Fetching the value sum_arr and loading into register in the ALU

3. Performing the sum of the two fetched values

4 One can argue that the first oper-
ation is not part of the atomic since
this fetch operation is from read-
only memory (with respect to the
task).
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4. Writing the result of the sum back into the memory, represented by sum_arr

You know that the end goal of adding a value from an array to a variable is only
valid if sum_arr stays constant during the operation. The operation consisting of
these 3 tasks (excluding task 1), can be said to be an atomic operation. Therefore,
one require that it be performed in serial, rather than in parallel. We need a way
of expressing in code the need to perform atomic operations. In many languages
there are special functions and libraries available to allow one to write common
atomic operations (such as incrementing a variable) in a readable and thread-safe
way. In Julia, there exists native support for atomics in the Threads library, so we
can start with:

julia> using Base.Threads;

We can alter the previous algorithm to include this:

function naive parallel sum with atomic(arr) Algorithm 7.4. A naive implemen-
sum_arr Ktomic{eﬁypefarr)?( zero(eltype(arr))) taltior} of a parallel reduction, using
@inbounds Threads.@threads for i in eachindex(arr) atomics.
atomic add!(sum arr, arr[i])
end
return sum arr[]
end

julia> naive parallel sum with atomic(arr)
523.8903659729365
julia> naive parallel sum with atomic(arr)
523.8903659729378
julia> naive parallel sum with atomic(arr)
523.8903659729372

Now, if we run this algorithm we will get fairly consistent results. Any errors
in the output will be because, unlike normal addition, floating point addition is
not associative. However, if we were to benchmark this solution, we would find
that it is severely lacking:

julia> @btime naive parallel sum with atomic(arr)
15.269 us (99 allocations: 8.45 KiB)
523.890365972937
julia> @btime sum(arr)
67.113 ns (1 allocation: 16 bytes)
523.890365972938
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This implementation is around 300 times slower than the native implemen-
tation of sum. Using atomics is incredibly slow as it forces all the operations to
happen sequentially. Additionally, it requires that most threads sit around wait-
ing. In later chapters, we will revisit this problem and implement a much faster
algorithm.

If atomics are not very performant, when should they be used? The answer
is when the operation running in parallel contains only a small section which
needs to be performed atomically. An example would be running an expensive
simulation in parallel and aggregating statistics during/after the simulation.
These simple operations of aggregating the statistics are likely to be far less
expensive than the simulation itself, and each thread spends most of the time in
the simulation, and not that much time waiting to access the memory to change
the statistics.

The Base.Threads module provides the following functions:

e atomic or!
e atomic xor!
e atomic sub!
e atomic min!
e atomic_max!
e atomic cas!
e atomic and!
e atomic_add!

These cover a large array of operations you may need, however, if you require
more flexibility, you can use a mutex or a semaphore.
Mutexes and Semaphores:
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Mutexes and Semaphores are primitives for synchronising operations and
processes. A mutex provides ““mutual exclusion”, which means that only one
task can have access to a mutex at a time, while all other tasks are blocked until
control of that mutex is released. You can think of a mutex as being a lock on a
door, which provides access to a room (which will act as the metaphor for the
resources/operations that can only be accessed by one person at a time). Initially,
the door is open, so the first person to use the room can walk in and lock the door
behind them. Any other people looking to use that room will be blocked and will
have to wait until the first person has finished. Once that person is finished, they
need to unlock the door to leave, allowing the next person in the queue to go
inside.

A mutex is usually implemented by scheduling blocked threads after the
current thread with control of the mutex has been completed. This puts the other
threads to sleep until they are able to continue. This can cause performance
issues as waking a thread from sleep can be expensive. Alternatively, it can be
implemented with a “’spin lock”, which has each blocked thread keep checking
whether the mutex is available over and over in a continuous cycle. This keeps
the thread awake, but wastes many CPU cycles and is much less efficient than
putting a thread to sleep if the thread has to wait for a longer time.

A semaphore is slightly different in that it is a signalling method which can
symbolise the availability of limited resources. A semaphore is essentially an
integer variable which has two atomic operations a wait and signal operation that
atomically decrements and increments respectively. The semaphore is initially
set to the number of resources available and cannot be decremented below 0. A
thread that tries to perform the wait operation when the value is 0, has to wait
until another thread releases control and increments the value. The key idea is that
a resource can be given and taken by different threads. For example a producer
thread can put data into a shared resource, which can then be consumed by
another process when the producer sends the ““signal” command.

While a mutex can provide mutual exclusion to a single resource / group of
resources, a semaphore can represent a buffer or a pool of resources.

In Julia, one should look to use a ReentrantlLock to act as a Mutex. Generally,
semaphores are far less common, but can be found in additional packages, or
easily written oneself using a ReentrantLock. The syntax can be gleamed by the
following;:
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mutex ReentrantLock()

Threads.@threads for i in 1:length(results)
# Long running processing
results[i] some_function(i)

lock(mutex) do
# process the results of results[i] serially
aggregate results add_aggregate! (aggregate results, results[il)
end
end

It is important to remember that this method of programming is usually dis-
couraged, due to the performance hit, as there are usually better implementations.

7.4.2  Producer and Consumer

It is very common to have two tasks running in parallel, one which produces data
and the other that consumes that data in some way. One example is a simulation
which is expensive and run on a background thread and another consumer thread
which processes this simulation and controls a live plot. This allows for a split
responsibility, which makes the code more reusable, since the simulation code
does not need to be hooked up to the plotting code directly.

Julia provides a data structure called a Channel, which makes implementing
this pattern very easy. A channel is a data structure for storing information,
which internally uses locks (mutexes and semaphores) to synchronise data access
between different threads.

When constructing a channel, we can specify a capacity along with the data
type of the elements stored in the channel:
julia> capacity = 8;

julia> buffer = Channel{Float64}(capacity)
Channel{Float64}(8) (empty)

Here, we can store a maximum of 8 floating point numbers in the channel called
buffer.

Now let’s write a function which will send data into the channel. An example
function is given in Algorithm 7.5.

The function put! is similar to push!, as it sends the data in the second ar-
gument into the channel. However, if the channel is currently full, it will cause
the calling thread to hang until there is a free space to put the data in. The final
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function producer fn(buffer::AbstractChannel, total items) Algorithm 7.5. A function to pro-
for i in 1:total items duce data and store it in a buffer.
sleep(0.02) # simulate work
put! (buffer, rand(Float64))
end
close(buffer)
nothing
end

line calling the close function makes sure that the channel cannot accept any
more inputs. Also, closing the channel ensures that the consumer knows that the
stream of data has ended when all the elements are used up.

We need to also consume the data, which we will also write in a function given

in Algorithm 7.6.
function consumer fn(buffer::AbstractChannel) Algorithm 7.6. A function to con-
s zero(eltype(buffer)) sume the data produced by Algo-

rithm 7.5. This is done using a very

for item in buffer ) ;
simple summation.

S item
end
S
end

Here, we are safely iterating through the buffer with a for loop. This is a safe
way to iterate. One can manually iterate through the channel using the take!
command, but using a for loop like this tends to be a better option.

We can finally write some code to see this in action, using the Threads.@spawn
macro to start work on a different thread.
julia> Threads.@spawn producer_fn(buffer, 50);
julia> @time result consumer_fn(buffer)

1.083228 seconds (32.19 k allocations: 1.636 MiB, 2.96% compilation time)
21.185664445659256

This pattern is very useful when you want to read data from a file and start
processing it immediately, without having to wait for the file to finish reading.

Additionally, if producing data and consuming data take very different amounts
of time, one can have more producers than consumers and vice versa to scale up
the entire process. For example:
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If we want to schedule the consumer on a different thread as well, the return
value from the Threads.@spawn value is a Task object, not the result. We have
to manually fetch the result to consume it. For example:

result task Threads.@spawn consumer_ fn(buffer)
result fetch(result _task) # hangs until the task is complete

julia> buffer = Channel{Float64}(capacity)
Channel{Float64}(8) (empty)
julia> [Threads.@spawn producer fn(buffer, 10) for _in 1:5];
julia> @time result consumer_fn(buffer)

0.190185 seconds (284 allocations: 8.922 KiB)
25.797803529808906

Here, the result is roughly what we expect still, but we were able to reduce the
time waiting for the buffer to fill up since we had multiple consumers. Note that
we must re-open the buffer before execution.

When using channels (and mutexes and semaphores generally), one should try
to avoid deadlocking your code. A deadlock occurs when one thread is endlessly
waiting for something that will never happen, usually because another thread is
also in a deadlock. This usually happens because one thread is waiting for the
results of another thread, but the other thread is waiting on the first thread.

7.5 When to parallelise?

The first question that a developer must fully understand is when to parallelise.
Since a parallel implementation can often be difficult and sometimes even detri-
mental to performance, one must answer this crucial question.

7.5.1  Profiling and Benchmarking

Usually, one already has an implementation in serial code, which is the target
of optimisation. Before deciding to optimise this function and make it parallel,
one should begin by benchmarking the function on a typical workload. This
benchmarking, ideally, should be written as a function so that it can be repeated
throughout the optimisation process to make sure that improvements are being
made. Benchmarking the process, usually done via profiling, has to reveal that
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optimising this function is worth it, as it will have a large effect on the overall
performance of the application. If the application spends 0.001% of its time in
this function, making it twice as fast will have little overall effect (as stated by
Amdahl’s law discussed earlier). We, as developers, have a limited amount of time
we can spend on our code, and it is important to use it as efficiently as possible.

If we have decided that this function should be optimised and will have a
significant effect, then make sure that benchmarks are clearly written out in
functions, so they can be repeated in the future.

7.5.2  Identifying Speed-up Candidates

Once one has an idea of which parts of the code will have the largest effect on the
overall computation time of the program, one should then use the techniques and
laws from the previous sections of this chapter to analytically find out whether
any parallelisation is likely to increase performance.

Firstly, one should think about the dependency graph of this part of the al-
gorithm and see if there are significant sections which can be done at the same
time.

Secondly, one should ask if the identified parallel sections make up a significant
enough fraction of the whole to make a worthwhile impact on the overall execution
of the program. This can be estimated using Amdahl’s Law.

Lastly, one can ask if increasing the problem size would change the answer
of the previous question. If the speed-up becomes more efficient with larger
and larger problem sizes. This comes with the assumption that increasing data
throughput has tangible benefits.

These are all clues that will help you to avoid spending time parallelising a
problem which will have little effect on the overall performance of your program.
However, we have adequately discussed the “how’” of parallelising code. That
will be the topic of the next few chapters.

7.5.3 Practical Slowdowns

Whenever one wishes to parallelise an algorithm, there are significant factors that
can get in the way of gaining the maximum speed-up. The main factors can be
summarised as:

1. Time taken to spawn multiple threads/workers.
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2. Time taken to schedule the work and divide it amongst the workers.

3. Time spent creating additional storage for the workers to avoid race conditions.
4. Time wasted due to idling because of poor load-balancing5.

5. Idle time of workers due to locks (mutexes, semaphores and atomics).

6. When more cores of a processor are being used, the energy used by the chip is
vastly increased. In order for the CPU to stay at a safe temperature, the firmware
may reduce the clock speed of each core. Lowering the clock speed will lower
the overall power draw and the temperature of the CPU. Additionally, single-
core may have a turbo mode which ramps up the clock speed of a single core,
which is reduced when multiple cores are being used. For this reason, one may
not see as big a speed-up as expected.

We will spend time in the next chapters discussing not only how to parallelise the
code, but also strategies for mitigating these issues which cause performance hits.

7.6 Summary

Throughout this chapter, we have looked at the theoretical basis of parallel comput-
ing. Many of the examples shown use the multithreading paradigm (discussed
more in Chapter 8), however, we will also have an in-depth look at multiprocess-
ing in Chapter 9 and even GPU parallelism in Chapter 10.

5 Load balancing is scheduling the
tasks amongst the workers so that
each is as busy as possible. If the
tasks take different amounts of
time, then this strategy can become
more complicated.



8 Multithreading

As there are many types of parallelism, we must first make a distinction about mul-
tithreading. Multithreading is the most common parallel programming paradigm
you will come across, at least in languages like Julia, C#, etc. It is usually the
easiest paradigm to implement, and can usually be added into serial code with
only a small amount of tweaks. Multithreading has the following traits:

e A process using can have many threads, each thread being a distinct, self-
contained, sequence of instructions that can execute in parallel or concurrently®.

e A thread is an abstract unit of work which is usually mapped one to one with
a CPU core. A CPU is oversubscribed if the number of concurrent threads
being executed is larger than the number of CPU cores, in which case the CPU
must spend time switching between the threads to give the illusion of full
parallelism, but at the cost of degraded performance.

e In the multithreading paradigm, threads can access shared memory, and so
can read from and write to the same variables.

e As each CPU core has its own L1 cache, and some cores do not share L2 cache,
this means that cache should be considered to be local to each thread.

In comparison with other parallel programming paradigms, multithreading is
distinct in that is a shared memory paradigm, meaning that multiple workers can
work on the same piece of memory. Shared memory between workers is both a
blessing and curse. A blessing as one does not need to manage communication
of memory between the workers. A curse since multiple workers can access the
same memory, leading to potential race conditions which can be hard to detect,
but easy to introduce.

* Concurrency notes the ability to
execute parts (in this case threads)
out-of-order or partial processing
of one and stopping to work on
another. One can think of concur-
rency as what will happen to paral-
lel code when there is only a single
worker, where the worker quickly
switches between many tasks, giv-
ing the illusion of working on the
items in parallel.
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As an additional complication, many modern CPUs now have Simultane-
ous Multithreading (SMT - also known as Hyper-Threading by Intel). SMT
introduces new registers on each CPU core that effectively ““double” the
number of threads that a CPU core can process. The main idea behind this,
is that multiple CPU tasks may need different units within the CPU core.
One task may require the ALU (Arithmetic Logic Unit - the unit that han-
dles mathematical operations), while another task only needs to manage
memory. With SMT, we can effectively have both tasks running in parallel
on the core, as if we had two physical cores. This speed-up only works if
the resources that each task need at any one time do not overlap. Adding
SMT to a chip is a cheap way of increasing the throughput through a chip.
Usually, SMT will only increase the performance of some code by around 20
to 30%, but costs the manufacturers very little to add on. Unfortunately, in
scientific computing we rarely have tasks that require different resources on
each CPU core, rendering SMT to be of little practical benefit. When choosing
the number of threads to use, a safe bet is to use the same number as you
have physical cores. On Windows, task manager will show you that you have
double the number of cores you actually have, as these show logical cores
and not physical cores.
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8.1 Multithreading in Julia

Fortunately, since Julia v1.3, multithreading has been fairly simple to use inside
of Julia. Performance of multithreading has also increased as Julia develops. For
this reason, results shown in this book may vary greatly, depending on when it is
read, and the current version of Julia you are using.

This section will cover a basic use of multithreading to speed up an embarrass-
ingly parallel algorithm. An embarrassingly parallel problem is one where we
have a one-to-one relationship between our inputs (parameters) and our desired
outputs (results). This sort of problem can be distilled down to repeating the
following operation n times:

ri = f(xi), (8.1)
where x; represents one element of the # elements that are to be processed, f is the
common function that performs the mapping and r; represents the i element of
the results vector. To use Julia specific language, any operation that can be written
in vector format (broadcasted) is likely a good candidate to be embarrassingly
parallel.

For a case study, let’s look at a way that we can calculate 77. We will choose a
Monte-Carlo method of estimation, since this will prove to be an excellent case
study for multithreading. Monte-Carlo methods are sampling techniques that
can be used to estimate quantities via random simulations. They are often very
easy to implement and can be used as a simple technique to provide numerical
estimates for quantities that difficult or impossible to calculate analytically. In
the case of calculating 77, one can estimate its value by playing darts on a square
block, with a circle touching the edge of the square. If the radius of the circle is 7,
then the area is 7772 and the area of the square it lies within is 4r2. We know that
the ratio of the area of the circle compared with the square is p = Z—r’; = Z.If we
can calculate an estimate for p, we can approximate 7t as 77 = 4p.

We can now randomly play darts on this setup, making sure that each point in
the square is equally likely to be somewhere a dart hits. Then we can count how
many of the darts land in the circle, compared with landing outside the circle and
in the square. If we throw n darts uniformly randomly in the square and only 7,
land inside the circle, then we know that p ~ ¢, which will approach the true
value of p when n — oo, or in other terms:

=40 =4 lim < (8.2)

n—oco N

Figure 8.1. The dart board setup,
with a rectangular backdrop and a
circle matched to the edges of the
backdrop. The green circles show
a dart hit and the red circles show
a miss outside the circle.



158 CHAPTER 8. MULTITHREADING

First, let’s write an algorithm to do this in serial.

function est pi mc_serial(n)

n _c zero(typeof(n))
for in 1:n
# Choose random numbers between -1 and +1 for x and y
X rand() 2 1
y rand() 2 1
# Work out the distance from origin using Pythagoras
r2 X*X+yty
# Count point if it is inside the circle (r*2=1)
if r2 1
n_c 1
end
end
return 4 n _c n

end

One can see that the estimate for 77 improves with the number of darts thrown,
by using a much higher number of points:
julia> pi
n = 3.1415926535897...
julia> est pi mc serial(100)
3.28
julia> est pi mc_serial(10_000)
3.1356

Additionally, one can plot the standard deviation of the relative errors of each
estimate of 7T against the number of darts thrown. This can be seen in Figure 8.2,
which shows that the relative error approaches zero as n — co.

While this is not the most efficient way of calculating 7, heavily relying on
the quality of the random number generator, it does provide a case study for a
parallel speed up.

Each dart thrown requires two randomly generated numbers, mapped to be
between 0 and 1. Additionally, they must calculate the square of the distance from
the dart to the origin and check to see whether it is less than 1. All of these steps
can be done in parallel, however, the variable n_c is shared between the threads
and so provides a race condition if multiple workers were to try and alter it at the
same time. In order to solve this, we can have a variable for each thread and then
separately sum these at the end.

Algorithm 8.1. A serial implemen-
tation of a Monte-Carlo estimate
for 7t using Equation (8.2).
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Figure 8.2. The graph shows the
estimate of the relative error of the
estimated value of 7. This graph
shows the standard deviation (us-
ing 30 repeats) of the quantity
W where 7’ (1) represents an
estimate for 7w constructed using
Equation (8.2) with n samples.
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function
n_cs
Thre

end

nc

retu
end

est pi mc_threaded(n)
zeros(typeof(n), Threads.nthreads())
ads.@threads for in 1:n
# Choose random numbers between -1 and +1 for x and y
X rand() 2 1
y rand() 2 1
# Work out the distance from origin using Pythagoras
r2 XEX+yty
# Count point if it is inside the circle (r"~2=1)
if r2 1
n_cs[Threads.threadid()] 1
end

sum(n_cs)
rn 4 n c n

Algorithm 8.2. A basic mul-
tithreaded implementation of a
Monte-Carlo estimate for 77 using
Equation (8.2).

Here, we have used very little memory to keep track of the counts, and made
sure the implementation was thread-safe as each thread accessed a different
part of memory. It should be noted here that Threads.threadid() returns an
ID for the currently executing thread within the threaded loop. Additionally,
the rand() function call is thread-safe on recent versions of Julia (v1.6+). Note

that this implementation, even when seeded, will not be deterministic. Even if
each thread had its own seeded RNG, then additional randomness is introduced
when scheduling the threads for execution. This is usually not an issue, but it is

something that should be kept in mind, especially when one would like to write
testable code.

Now, we can benchmark these algorithms and see which is fastest. We can

calculate the efficiency based on the number of threads:

julia> num_threads Threads.nthreads ()

16

The benchmarks:

julia> n = 100 000 000;

julia> mc_pi serial time = @belapsed est pi mc_serial($n)
0.331897864

julia> mc_pi threaded time = @belapsed est pi mc_threaded($n)

0.16878274
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julia> mc_pi serial time/mc_pi threaded time
1.9664206423002732

One would expect the ratio of those times approach the number of available
threads, however, even for this very large value of n, the parallel efficiency is still
very small. This is very likely to be a case of false sharing.

8.1.1 False Sharing

When a CPU requests data from memory, it is usually gathered as an entire cache
line, which is usually large enough to gather several adjacent values in memory.
If one CPU core acquires this cache line in their L cache, it may store values that
other CPU cores are currently writing to, even if the current CPU core is not using
it. If the cache line is invalidated by another write (such as incrementing another
value), extra processing time has to be spent synchronising the operations.
Let’s modify Algorithm 8.2 to conduct an experiment on false sharing by
spreading out the memory of each calculation to avoid accessing the same cache
lines. We will do this by adding a spacing variable, implemented in Algorithm 8.3.

function est pi mc_threaded spaced(n, spacing=1)
n _cs zeros(typeof(n), Threads.nthreads()*spacing)
Threads.@threads for _ in 1:n
X rand() 2 1
y rand() 2 1

r2 X*X+yty

if r2 1
n_cs[Threads.threadid()*spacing] 1

end

end

n c sum(n_cs)

return 4 n c n
end

We can clearly slow that increasing the spacing between elements has a huge
impact on performance. We can see that the performance increases stop around a
spacing of 8, suggesting that each cache line is around 512 bits wide.

Algorithm 8.3. Animplementation
to show the affect of false sharing
on performance.
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The main reason that this false sharing is such a huge problem for performance
in this problem is due to the frequency at which each core is accessing and writing
to that memory. This problem is not as bad if each core is only reading memory,
as the memory does not change and no synchronisation needs to occur. This is
more of our worst case scenario. It should be noted that one should almost never
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implement an algorithm like Algorithm 8.3 to avoid false sharing. There are much
better methods of doing this, discussed next.

8.1.2 Chunking

The problem of false sharing can be avoided by chunking the larger calculation
into much smaller ones. An additional benefit of this method is that we can
use the original implementation to maximise code reuse. If we make any perfor-
mance improvements to the serial algorithm, this will also improve the parallel
implementation.

The algorithm for this chunking is shown in Algorithm 8.4. A very helpful
method for chunking the operations is from the base Iterators library called
Iterators.partition which will break up a collection into a specified number
of smaller blocks.

Now, we can benchmark this final algorithm and compare it to the others:

Figure 8.3. Shows the bench-
marked timings of the parallel
Monte Carlo estimation using Al-
gorithm 8.3 with n = 10° and
changing the spacing between ele-
ments in the storage array.

julia> mc_pi threaded chunked time = @belapsed est pi mc_ threaded chunked($n)

0.021433614

julia> mc pi serial time/mc pi threaded time
1.9664206423002732

julia> mc pi serial time/mc_pi threaded chunked time
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function est pi mc_threaded chunked(n)
n_threads = Threads.nthreads()
num_inside zeros(Float64, n threads)
# Calculate maximum chunk size
chunk size div(n, n_threads, RoundUp)

# Create an iterator and collect to turn into an array
iter = collect(enumerate(Iterators.partition(1l:n, chunk size)))
Threads.@threads for info in iter
i, idx_range = info # Unpack the tuple from enumerate
n _block = length(idx range)
pi est = est pi mc serial(n_block)
num_inside[i] pi est*n block/4
end

n_c = sum(num_inside)
return 4 n _c n
end

15.484923074568758
julia> mc_pi threaded time/mc pi threaded chunked time
7.874674798193155

We see that the chunked approach was must faster, and almost reached the
theoretical maximum performance of 16x. In general, it is better split parallel
tasks into large chunks that can be sequentially processed by that chunk. This
avoids a lot of scheduling and orchestration overhead when managing the threads,
as most variables can live inside the stack with little need to coordinate execution.
Additionally, we massively reduced the number of writes to memory with the
chunked approach as the count could live in registers close to the CPU and only
be saved to memory once the bulk of the calculation was completed.

However, it should be noted that the overhead of parallel execution can be
significant. The only way to see the effect is to measure the performance relative to
the input size n. We can already assess that this algorithm has a time complexity
of O(n). Instead of plotting these lines together, we will plot the S, compared to
the theoretical maximum given by Amdahl’s law. Inspecting Figure 8.4, we can
see that the chunked implementation approaches the maximum speed-up for
this algorithm, but suffers at lower values of #.

Algorithm 8.4. A multithreaded,
partitioned, implementation of a
Monte-Carlo estimate for 77 using
Equation (8.2).
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One can infer that the cost of using multithreading is quite high, especially
when the contents of the for loop are computationally inexpensive. However, this
cost is more or less constant and increasing the throughput will minimise relative
size of this cost. In ??, we see that it takes at least 10° to 10° samples to make the
switch worth it, as the overhead of the threaded approach is much greater than
the time taken to perform the calculations.

8.2 Tuask-based Parallelism

It is important to acknowledge that using the Threads.@threads macro is not the
only way to achieve parallelism in Julia. There are other libraries that provide
their own macros such as LoopVectorization.jl, which provides the @tturbo for
thread-based speed-ups. However, one can also manage the threads directly,
using Threads.@spawn.

Threads.@spawn works by creating a task that is scheduled to run on any
available thread. This returns a task object that can be used to gather results or for
synchronisation between the threads. For example, we can write the chunk based
parallelism using the Threads.@spawn convention, with a bit more boilerplate
code. The example is written in Algorithm 8.5.

Figure 8.4. Shows the relative
speed-up S of using Algorithm 8.4
(chunked parallel) over the serial
implementation Algorithm 8.1. We
have also plotted the theoretical
maximum performance increase
given by Amdahl’s law, given by
Equation (7.2).
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function est pi mc_spawn(n) Algorithm 8.5. A task-based mul-

end

num_threads = Threads.nthreads() gﬂ“eédedinqﬂm“enmﬁpn‘m?@
block size = div(n, num_threads, RoundUp) nguahon(sa)asaneﬁunam or
task handles = Vector{Task}(undef, num_ threads)
for i in 1:num_threads
if i == num_threads
num _darts = n-block size*(num_threads-1)
else
num _darts = block size
end

task handles[i] = Threads.@spawn est pi mc_serial($num darts)*$num darts/4
end

nc=0.

for task in task handles
n ¢ += fetch(task)

end

return 4 * n.c / n




One can see that we now have two for loops, the first actually spawns the
threads to do the work, and the second has to fetch the results from each task
handle. Spawning the task simply schedules it to commence, but fetching it waits
for the thread to finish. This is a much lower-level approach to threading, and
can be useful when you do not know how many times one needs to loop. One
will also notice that some values were escaped using the ¢ character, this makes
the macro evaluate and print the value of the chosen variable directly into the
expression to allow for better type analysis.

We can call this method to see it works, and compare it to the threaded and
chunked version we previously coded.

julia> n = 1 000 000
1000000
julia> @btime est pi mc threaded chunked($n)
229.932 ps (98 allocations: 8.77 KiB)
3.144808
julia> @btime est pi mc_spawn($n)
228.148 ps (131 allocations: 8.69 KiB)
3.141232

One can see that the performance is slightly better in this example, but at the cost
of added complexity. Using Threads.@spawn should be done very sparingly, as it
can very easily introduce errors at runtime. It is strongly recommended that one
sticks to using the Threads.@threads macro for multithreading parallelisation,
and only look at using the Threads .@spawn if it cannot be implemented otherwise,
or one finds that the performance is much better otherwise. For most use-cases,
Threads.@threads is as fast or even faster than an equivalent Threads.@spawn
implementation.

8.3 Packages

A very helpful package for cleaning up the multithreaded implementations is
the ThreadsX.jl package. This provides a few functions which can help to write
concise code for implementing common operations in parallel. Some common,
helpful operations are

e map and map!

e reduce

8.3. PACKAGES
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e mapreduce
e sum

e findall

e findfirst
e findlast
e foreach

e sort

e sort!

Another package which can be used is Transducers.jl which allows for piping
operations to be easily composed. Let’s take an example of the Monte-Carlo 7t
estimation. We will create a function which ““throws a dart” and returns a “hit”
or a “miss” encoded as 1 or 0.

square(x) X*x Algorithm 8.6. A simple imple-

throw dart() square(rand()) square(rand()) 1 mentation of a single inner loop of
— Algorithm 8.1.

We can create a lazy mapping of values using the pipe operator : | >. This array

is then passed into the sum function:

julia> using Transducers
julia> n Int(le6);
julia> pi est transducers(n) = 4 * sum(l:n Map(_ throw dart())) n;
julia> @btime pi est transducers($n)
4.352 ms (0 allocations: O bytes)
3.14222

As sum is just a reduction operation, we can also use the generic, threaded,
reduction method foldxt from Transducers.jl to perform the same operation in
parallel:

julia> pi est transducers _t(n) 4 foldxt(+, 1:n Map(__ throw dart())) n;
julia> @btime pi est transducers t($n)

315.496 us (563 allocations: 19.59 KiB)
3.140908



Notice that this is a nearly perfect speed-up, without having to use a chunking
approach. Additionally, this uses much less code than before, while being of a
similar performance.

Check out the documentation for both of these packages to see what they can
be used for. However, it should be noted that most of this functionality is mostly
only for syntax. One can write the same code in pure Julia, without using these
packages.

8.4 Summary

8.4.1 Advantages

e Multithreading uses shared memory. Results from each thread can easily be
shared with one another, without the need of explicit communication.

e Shared memory allows data to be stored only in one place, reducing the mem-
ory footprint. Each worker does not need a copy of the data it is working
on.

e Each thread has access to the local runtime of the process in memory, including
all libraries and pieces of code, instead of each thread having a copy of the local
process. This significantly reduces memory overhead, and more importantly
the latency, of this pattern.

e Latency of utilising multiple threads is usually the fastest of all the parallel
paradigms covered in this book, except for hardware level parallelism (hard-
ware SIMD instructions).

e If a language has a multithreading implementation (like Julia or C#), it is
usually the easiest approach to leverage to allow a program to execute in
parallel.

8.4.2 Disadvantages

e Multithreading can only be scaled up to the size of one machine, the number
of threads limited by the number of logical cores on a CPU.

8.4. SUMMARY
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e Shared memory introduces the danger of race conditions occurring in your
code, in some cases requiring the need for atomics, mutexes and semaphores,
drastically increasing the complexity of some code.

e Some algorithms will need a complete redesign to effectively use the multi-
threading paradigm.

e Latency of spinning up additional threads and coordinating execution across
all threads incurs a significant overhead cost. Unless the computation can be
effectively parallelised, using multithreading may even slow down one’s code.

e Execution in parallel necessitates an unpredictable order of execution, which
often times greatly impacts the ability of the compiler and the runtime to
pre-empt which memory is needed often and therefore has worse cache man-
agement than a serial approach. This can be mitigated, but usually requires an
extension.

o Existing routines or libraries used by your code may not be ““thread-safe”,
which means they should not be executed concurrently. If two parallel pieces
of code run something that is not thread-safe, it could lead to unpredictable
results at best, memory corruption and runtime errors at worse. Additional
care by the developers must be taken to ensure that using multithreading is
safe. Sometimes, if the non thread-safe code is essential, this paradigm may
not be available.

o Experiments that rely on a deterministic and predictable outcome, such as ones
that use random number generation with a seeded pseudo random number
generator often require intervention to make sure that results can be duplicated.
This may involve re-writing large parts of the code base to ensure reproducibil-

ity.
e FEach thread usually requires its own stack and memory space in order to
perform calculations. Additionally, used by each thread is often not allowed

to overlap due to the risk of race conditions, and so more memory is usually
required.



8.5 Exercises

Before beginning the exercises, check that your computer has multiple cores, and
then run Julia with access to additional threads, either by setting the environment
variable JULIA_NUM_THREADS and restarting Julia, or by running Julia with the
command julia -t 4, which starts the Julia REPL with 4 threads?. The number

of threads used should be set to the number of logical cores on your computer.

One can check the number of available threads by using Threads.nthreads() in
the REPL.

Exercise 8.1. Consider the function:

function generate random numbers (k)
"""Generates n random numbers"""
for in 1:k
rand()
end
nothing
end

This function can simulate a variable amount of work. This function can be
called via generate random numbers(k), where k is chosen to mimic short or
long workloads. One can imagine having to repeat this work n times. Empirically
measure the time taken for these variable work loads as a function of n with and
without Threads.@threads. Uses these times to create a plot resembling ?? to

show the performance of the multithreaded task and serial task vs task size (n).

Reproduce this graph for varying workload size, k, e.g. k = 10 (short), k = 10°
(medium) and k = 10° (long), adjusting the range of 1 used to compensate for
increased workload of the loop.

Exercise 8.2. Continuing on the results from the previous question, assuming
that n is equal to the number of available threads, what is the minimum workload
size needed to see improvements from using multithreading.

Exercise 8.3. Write your own multithreaded mapreduce implementation, using
the same format as the following serial implementation:

function custom mapreduce(map_fn, reduction op, array)
@assert length(array) 2
mapped_results map_fn. (array)
acc reduction op(mapped results[1], mapped results[2])
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threads to use all logical cores.



170 CHAPTER 8. MULTITHREADING

for i in 3:length(array)
acc reduction_op(acc, mapped results[i])
end
return acc
end

One can assume that the reduction operation is associative.

Exercise 8.4. Take the following function:

function randomised workload(min_time, max_time)
# Generate a random amount of time to wait
time rand() (max_time-min_time) min_time
sleep(time)
nothing

end

This will allow you to simulate a process whose competition time is uniformly
random. Use this in an experiment to compare the effectiveness of chunking a
serial implementation (as in Algorithm 8.4) vs a simple threaded implementa-
tion when the workload size is randomised. How large does the workload size
variability need to be for the simpler implementation to be more effective?

Exercise 8.5. Imagine a function f(n) whose runtime can be predicted via c(n) =
an + b, where a and b are real positive constants and a > b. One needs to evaluate
f(n)atn =1,2,...,9999,10000. If one has k workers available to calculate the
results of f(n) for each of the required n, how must the tasks be scheduled
amongst the workers to minimise runtime? Repeat the same analysis, now using
c(n) = an® +b.

Note that answers need not be exact, just more efficient than a naive scheduler.



9 Multiprocessing

In the last chapter, we talked about scheduling tasks across different threads in a
program, all of which have access to the same set of shared memory. Multipro-
cessing takes a different approach, and isolates each worker in their own process.
Isolation means that each worker cannot access another’s memory. Any sharing of
information has to be done via communication between each process. This com-
munication can happen over sockets if each process lives on the same machine. If
the processes exist across multiple nodes, this communication is facilitated via
network communication over ports.

In multiprocessing, one starts n processes independently, all of which have their
own isolated memory space for storing a copy of their code as well as space for the
heap and the stack. One must implement some framework or library to facilitate
communication of these different processes. The way in which the processes are
connected is called the topology. There are different models that can be used
to structure the processes, but one of the most common is the master-worker
configuration, which has one central process (the master) which coordinates the
worker processes.

Multiprocessing is the commonly found parallel programming paradigm in
languages like MATLAB and Python. In MATLAB, using parfor instead of for
will distribute the calculation of the inner loop across multiple processes. While
this is a very easy way to parallelise code, if one does not have a parallel pool
(i-e. a group of MATLAB processes) running, it can take several minutes to start
executing the code. Multiprocessing can have a huge latency overhead, as each
worker has to start an entirely new process. This involves loading an entire copy
of the language runtime, and orchestrating the communication channels between
each process so that tasks can be appropriately scheduled. In the case of MATLAB,
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you are loading up an entire copy of the MATLAB runtime (excluding the GUI)
for each worker requested.

Fortunately, Python’s runtime is much smaller, and so the overhead is actually
very small when using multiprocessing. Python"' must use multiprocessing due to
the built-in Global Interpreter Lock (GIL), which interferes with threads that try
to run at the same time, effectively allowing only concurrency but not parallelism
inside a single process.

In Julia, the standard way to use multiprocessing is via the Distributed.jl pack-
age, included in the base library.

We can summarise the main traits of multiprocessing below:

e A multiprocessing paradigm uses several copies of the runtime to perform
tasks in parallel. Each copy in a separate process, unable to access the memory
space of another process.

e Any communication between processes must occur via sockets or over the
network, and is usually very high latency. This includes sharing the results of
calculations.

e Each process can have access to multiple threads allowing the combination of
multiprocessing and multithreading paradigms.

o All the processes used need not exist on the same machine, but instead, can be
spread across several machines. We often refer to a group of machine networked
together as a cluster, and is usually where multiprocessing is used the most.

9.1 Multiprocessing in Julia

The easiest way to start using multiprocessing in Julia is to use the Distributed.jl
package. This is the standard package to facilitate the multiprocessing paradigm.
To add the package, type the following into the REPL:

using Pkg; Pkg.add("Distributed");
As with multithreading, we should check how many processes are available to
do work. This is done with the command:

julia> using Distributed;
julia> nprocs()
1

' As in the reference CPython imple-
mentation.
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By default, Julia launches only a single process when running. There are a few
ways in which we can use more, the simplest is to use the addprocs function:

n_processes 16;
addprocs(n_processes);

This will spawn n_processes locally to act as workers. The total number of
processes with nprocs () will be one higher as this includes the master control

process. We can check the number of processes and workers available again to
make sure:

julia> nprocs()
17

julia> nworkers()
16

One can start Julia with multiple processes using julia -p 3, which will
start Julia with 4 total processes. Be aware that one should also run the
following, to make sure that each worker has access to all the packages:

@everwhere using Pkg; Pkg.activate(".");

The @everywhere macro execute the command on all workers.

The bread and butter of Distributed.jl are the following macros and functions:

e addprocs(n) - Spawns n available processes. This command launches processes
locally by default, but can also be used to launch processes on other machines
via SSH.

e @everywhere - A macro that runs the subsequent expression on all connected
processes. This is most useful for using statements and include calls to load
function definitions on the workers.

e pmap - A multiprocessing, parallel implementation of the standard map function
in Julia. This enables easy use multiprocessing for an embarrassingly parallel
problem.
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e @distributed - A macro which is useful for parallelising a for loop, with an
optional, built-in, mechanism for performing reductions.

e @sync-Amacro thathalts progression until all enclosed uses of @async, @spawn,
@spawnat and @distributed are complete.

Let’s start off with implementing Algorithm 8.4 in the multiprocessing paradigm.
We can start off by having an array of numbers representing the number of darts
to throw on each worker. Once this array is calculated we can map those numbers
onto an estimate of 77. The exact implementation is shown in Algorithm 9.1.

function est pi mc multiprocessing chunked(n)
num_workers nworkers ()

iter Iterators.partition(l:n, num_workers)

# Create a mapping function from a range to an estimate
_f(range) est pi mc_serial(length(range)) length(range) 4
num_inside pmap(_f, iter)

n_c = sum(num_inside)
return 4 n c n
end

If we try and use this algorithm straight away, we will encounter an error
since the function, est_pi_mc_serial, does not exist on all processes. This is a
common error when people use the multiprocessing paradigm, as we have to
load the function definitions on each worker before they are used. To simplify
the processes, we can abstract away all the functions in a separate file/module
and load the file. In the case of this book, I have called this file support code. jl.
We can give all processes access to these functions by running the command:

julia> @everywhere include("support code.jl");

Now that we have the code loaded, we can benchmark the multiprocessing
approach:

Algorithm 9.1. A chunked mul-
tiprocessing implementation of a
Monte-Carlo estimate for 77 using
Equation (8.2).
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julia> n = 100 000 000;

julia> mc_pi mp _chunked time = @belapsed est pi mc_multiprocessing chunked(\$n)

0.0267902

julia> println("MP Speedup vs Serial: ", mc_pi _serial time/mc_pi mp_chunked time)

MP Speedup vs Serial: 15.041112048435622

julia> println("Threaded/MP Relative Speed: ", mc_pi threaded chunked time/mc_pi mp chunked time)
Threaded/MP Relative Speed: 0.9632328239430836

We can see that the performance difference between the multithreaded and
multiprocessing implementations is mostly negligible, as n is very large, and the
calculation is dominated by time spent in the loop. Notice that the multiprocessing
implementation was slower than the multithreaded implementation, which is
typical in these cases. One should remember that latency costs are much higher
in multiprocessing than in multithreading.

Since we are effectively performing a map of empty arguments into the sum
of darts in and out, we can look at an alternative implementation using the
@distributed macro:

function est pi mc multiprocessing(n) Algorithm 9.2. A simple mul-
n_c = @sync @istributed (+) for = 1'n tiprocessing implementation of

# Choose random numbers between -1 and +1 for x and y 2 AMonEte'Ca.ﬂo eztlmat[ej for h"
x = rand() * 2 - 1 using Equation (8.2). Uses the

N @distributed macro to perform a
y = rand() * 2 -1 map-reduce on a Monte-Carlo pro-
# Work out the distance from origin using Pythagoras cess.

r2 = x*x+yty
# Count point if it is inside the circle (r*2=1)
r2 <= 1 # Last line indicates term to reduce
end
return 4 * n.c / n
end

Running this implementation, we get:

julia> mc_pi mp time = @belapsed est pi mc multiprocessing($n)

0.0301067

julia> println("MP Simple/Chunked Relative Speed: ", mc_pi mp_chunked time/mc_pi mp time)
MP Simple/Chunked Relative Speed: 0.8898417960121834

We see that this implementation is much simpler, but is about 10% slower than
the chunked implementation. This makes sense as the bulk of the reduction in
the chunked case is done locally and can be locally optimised and cache-friendly.
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Meanwhile, the simple approach requires the coordinated reduction of n separate
elements.

9.1.1  Suggested multiprocessing pattern

During development, one may switch between using serial, multithreading and
multiprocessing patterns. For this reason, it is often best to write the inner loop
of an algorithm in a separate function. This avoids having to maintain several
similiar copies of implementations of the bulk of your code. For this reason, we
suggest developing your code in the following way:

1. Write all inner loop functions, e.g. a single run of a Monte-Carlo simulation,
inside a single (or small number of) file(s). Make sure you have a single file
(which could simply include various other files), which loads all function
definitions of any functions that may be run in parallel.

2. Have a separate file for executing your code, which runs all the @everywhere
macros. This file should run @everywhere include("allfunctions.jl"),where
“allfunctions.jl”’ is the relative path to the file with all function definitions that
are needed by the parallel code.

3. Make use of packages like Transducers.jl or Folds.jl.

9.1.2  General Parallel Pattern

As a quick example, let’s write a function which emulates pmap with a custom
flag to indicate whether to use multithreading, multiprocessing or serial imple-
mentations:

We can then implement our naive Monte-Carlo algorithm with a single imple-
mentation:

We can benchmark each type of parallelism on the same algorithm to make
sure it works:

julia> n = 1 000 _000;

julia> @btime estimate pi($(SerialEx()), $n)
7.852 ms (8 allocations: 224 bytes)

3.14236

julia> @btime estimate pi($(MultithreadingEx()), $n)
541.300 ps (98 allocations: 10.81 KiB)
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# Declare an enum for the different map types Algorithm 9.3. An example way
abstract type AbstractExecutionMethod end of implementing a custom map
struct MultiprocessingEx <: AbstractExecutionMethod end ﬁuf?mlWhmhcansziﬂPatfen
struct MultithreadingEx <: AbstractExecutionMethod end o processTg, Tt irearing

; ; and serial maps. Note that there
struct SerialEx <: AbstractExecutionMethod end are existing packages which better

implement this functionality.
custom map(::MultiprocessingEx, mapping fn, c...) = pmap(mapping fn, c...)
function custom map(::MultithreadingEx, mapping fn, c...)
# Do some work to infer return type of function
return_types = Base.return_types(
mapping fn,
typeof(c)
)

if length(return_types) ==

return_type return_types[begin]
else

return type = Union(return_types...)

end
# Create a container to store results
container = Array{return_type}(undef, size(c))
Threads.@threads for i in eachindex(arguments)
container[i] = mapping_fn(arguments[i]...)
end
return container
end
custom map(::SerialEx, mapping fn, c...) = map(mapping fn, c...)

# Change the default implementation in your code
custom map(mapping fn, c...) = custom map(SerialEx(), mapping fn, c...)
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function throw darts(n)
total zero(typeof(n))
for in 1:n

total throw dart()
end
return total
end
get blocks(::SerialEx) 1
get blocks(::MultithreadingEx) Threads.nthreads()
get blocks(::MultiprocessingEx) nworkers()
function estimate pi(parallel type, n)
n_blocks min(n, get blocks(parallel type))

iter Iterators.partition(1l:n, n_blocks)

num_darts [length(iter) for range in iter]
dart results custom map(parallel type, throw darts, num darts)
return 4 * sum(dart_results) n
end
3.142464

julia> @btime estimate pi($(MultiprocessingEx()), $n)
1.387 ms (872 allocations: 36.80 KiB)
3.142812

These implementations are not always optimal, and one can specialise an
implementation that can be improved using a different method. For example, if
the input is smaller than a certain size, one will always use the serial version of
the code.

9.2 Multiprocessing on a Cluster

Multiprocessing is your go-to parallelisation method on a cluster. A cluster is a
collection of networked machines (often times referred to as ““nodes””), which are
usually similar in hardware architecture. A cluster typically gives you access to
hundreds, if not thousands of CPU cores. As clusters involve many machines, it
can often be very difficult to network each of the processes together and facilitate
communication. Fortunately, there is a package, ClusterManagers.jl, which removes
most of the hard work.

Algorithm 9.4. A simple im-
plementation using the custom
map paradigm, shown in Algo-
rithm 9.3. This will perform a chun-
ked implementation of a Monte-
Carlo algorithm which estimates
mt. It is vital that throw dart and
throw_darts are loaded on every
single worker. The implementation
of throw_dart comes from Algo-
rithm 8.6.
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In this book, we will focus on using the SLURM?. Other scheduling systems 2 SLURM Workload Manager - htt
may have support inside of ClusterManagers.jl, and it is likely trivial to switch toa ~PS://sturm.schednd.com/
different cluster.

As a starting point, let’s introduce a bash script, which is used to request

resources from the scheduler:

#!/bin/bash

#SBATCH --ntasks=32
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=2048
#SBATCH --time=00:10:00
#SBATCH -0 test job %j.out

julia --project run code.jl

This will request resources for 32 CPUs and around 64 GB of memory for a
maximum time of 10 minutes. It also starts the process with running the run_code.jl
julia file. We can take a look inside to see the process for setting up the nodes:

using Pkg

using Distributed
using ClusterManagers
using BSON

println("Setting up SLURM!")
num_tasks = parse(Int, ENV["SLURM NTASKS"])
cpus_per_task = parse(Int, ENV["SLURM CPUS PER TASK"T)
ENV["JULIA NUM THREADS"] = cpus_per_task
current project = dirname(Pkg.project().path)
addprocs(SlurmManager (num_tasks) ;
exeflags=[
"--project=\"$current_project\"",
"--threads=$cpus_per_task"
]
)
println("Workers: $(length(workers()))")

@everywhere include("allfunctions.jl")

parameters = get parameters()


https://slurm.schedmd.com/
https://slurm.schedmd.com/
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results = get results(parameters)

BSON. results

At first, we have to perform a bit of prep work, by adding a separate process for
each CPU and calling the correct cluster manager - SlurmManager. This also sets
the number of threads Julia can use, such that each process has the right amount
of threads. We have a separate file which defines the functions we need in our
experiment. The get_results function internally calls functions like pmap which
make use of multiprocessing.

We make use of the BSON.jl library to serialise our results and save them
in a file. BSON is similar to JSON but stores the data structure in binary,
instead of in plain-text. This allows a compressed storage of information,
at the cost of losing human readability. One does not need to implement
their own serialisation and de-serialisation methods, but instead make use
of BSON.jl through the and macros.

9.3 Message Passing

Arguably the most common approach to multiprocessing is by using a message
passing approach. MPI (Message Passing Interface) is a standardised specifica-
tion of facilitating message-passing for parallel computing in distributed systems.
As this is only a specification, there exist several implementations such as OpenMPI
and MPICH. Some of these implementations are specialised for the network hard-
ware used on a specific cluster.

The MPI approach has the developer write a program which will execute
simultaneously across each process. The MPI library exposes routines which
allow each process to be able to identify itself and send data to and from each
process. Additionally, the MPI library provides a barrier function which allows
all the processes to be able to synchronise their execution.

In Julia, one can use the MPLjl package to follow this programming model
which may be effective for your use case. However, Distributed.jl remains the
standard for multiprocessing, as it has a much less verbose programming model,
making it easier to get started.



9.4 Summary

9.4.1 Advantages

As each process need not live on the same machine, a multiprocessing approach
can be practically scaled up to almost any size. This means it is better able to
utilise huge amounts of compute via supercomputing clusters (i.e. your local
HPC).

As each process must use its own memory, race conditions are much rarer. Lack

of race conditions eliminates the needs for locks and can improve performance.

Each process can use libraries and resources that are not thread-safe in parallel.

9.4.2 Disadvantages

Each task must be communicated to each process, including all dependencies
such as functions and data. Functions and required data used by each worker
must be loaded on every individual process.

Multiprocessing implementations usually require external libraries to work
effectively.

Cannot share memory between nodes, care must be taken to explicitly send
and request information between nodes.

More resources, particularly memory, are required to support all the individual
processes3.

As with all parallel approaches, ensuring reproducibility can be very tricky
when using multiprocessing.

With Julia in particular, due to the JIT compiled runtime, each process must
compile all the code required to run their assigned tasks, which is a lot of
redundant processing. This can be reduced with efforts in precompilation, but
should be mentioned.

9.5 Exercises

Exercise 9.1. Take the following workload that scales linearly:
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3 In the case of MATLAB, each pro-
cess can take around 1 to 2GB
of memory before any data is
loaded. If you have many cores,
you can only utilise them if you
have enough memory for the ad-
ditional processes.
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function example _inner loop(k)
s zero(Float64)
for in 1:k

s rand (Float64)
end
S
end
function example workload(n, k=100)
results Vector{Float64} (undef, n)
for i in 1:n
results[i] example inner loop(k)
end
return results
end

(i). What does the parameter k control? (ii). Implement a multithreaded ver-
sion of example_workload. (iii). Implement a parallel version of example_workload
using multiprocessing. (iv). Design an experiment to compare the two imple-
mentations of example_workload, and the original, serial, implementation, as you
vary n. (v). Use the results of the previous experiment to estimate the latency
relationship of both Threads.@threads and Distributed.pmap to the variables n
and k.

Exercise 9.2. If you have an embarrassingly parallel problem, which relies on
non-thread safe code, which parallel programming paradigm is most suitable?

Solution: Multiprocessing - as each process will have its own isolated memory
copy which can ensure parallel processing without race conditions.

Exercise 9.3. Look at the following struct:

struct RunningStats{T}

min::T
max::T
mean: :T

num_samples::Int
end

(i). Define a function which reduces two samples of type T into a single RunningStats.
(ii). Extend the previous function to define reductions between single values of
type T, and RunningStats, in any order. (iii). Test this custom reduction using
the reduce function and the Statistics.jl on a vector of random floats. Calculate the
statistics of this vector and compare them to the reduced statistics output. (iv).



Write a multiprocessing parallel implementation of the reduction calculated in
the previous part, using a Monte-Carlo process of your choice which produces a
single value.

Exercise 9.4. Take the following setup:

using Random
using LinearAlgebra
using Statistics

const rng = Random.Xoshiro(1234)
function generate seeds(rng, n)
seeds = zeros(Int, n)
for i in 1:n
seeds[i] = rand(rng, Int)
end
return seeds
end
const n = 32
const seeds = generate seeds(rng, n)

function long calculation(seed; 1=10)
c_rng = Random.Xoshiro(seed)

k = 12
s = 27k
matrix_size = (s,s)

matrix = rand(c_rng, Float64, matrix size) .* 2 .- 1
cache = similar(matrix)

for j = 1:1
mul! (cache, matrix, matrix)
matrix .= cache ./ s .- matrix
end

return Statistics.mean(cache)
end

const results = map(long _calculation, seeds)

(i). Use multiprocessing to parallelise this calculation and make sure the
number of BLAS threads is set to 1. (ii). Implement memoised caching on the
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long calculation, which uses the disk as a cache. (iii). Use the previous parts to
create a script which can recover from failure, without losing too much progress.



10 Introduction to GPU Programming

As mentioned in Section 3.1.5, this chapter will be a deeper dive on using GPUs
for computational workloads. While GPUs were originally developed for accel-
erating rendering workloads, their massively parallel architecture lends itself to
accelerating scientific workloads.

10.1  Modern GPU Hardware

Modern GPUs are not limited to graphical applications, such as gaming and 3D
rendering, but can also be very effective at accelerating scientific simulations. A
modern user with access to a consumer level GPU (e.g. shown in Figure 10.1)
now has access to a comparable level of compute as supercomputing clusters
from the early 2000s (as measured by peak FLOPS").

A GPU s a type of co-processor which connects to the CPU via the motherboard.
This connection is usually through a PCle bus® and often requires a separate
power connection to run. The GPU has its own on-board memory and contains
many processor cores, typically on the order of 1000s.

3 Many modern high performance clusters now include many GPUs. Take
the Sulis HPC based at the University of Warwick as an example. Sulis has 90
NVIDIA A1oo Tensor Core GPUs, which can cost upwards of £20,000 each. Let’s
take a closer look at the hardware specifications of one of these cards:

e The A1oo supports the PCle Gen4 standard which is capable of a maximum of
64 GB/s memory bandwidth between the GPU and the CPU.

o The A100 has 40 GB of HBM24.

The NVIDIA 3090
GPU, designed for high-end con-
sumer desktop machines.

Figure 10.1.

* Floating-Point Operations Per Sec-
ond.

2 A PCle (Peripheral Component
Interconnect Express) bus is a stan-
dard, high-speed, interface for con-
necting external hardware to a
motherboard

3R. Krashinsky, NVIDIA Ampere
Architecture In-Depth, https://dev
eloper.nvidia.com/blog/nvidia
-ampere-architecture-in-depth
/, Accessed on 15th January 2023,
2020.


https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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e The A100 has a theoretical maximum Single-Precision Performance of 19.5
TFLOPs®. Single-Precision (FP32) refers to 32 bit floating point numbers, with
8 bits to represent the exponent (the range) and 23 bits for the mantissa (the
precision).

e This card also supports using the Tensor Float (TF32)® standard which uses
the same number of bits as FP32 for the exponent, while only using 10 bits for
the mantissa, like FP16. The TF32 precision allows for reaching a maximum of
156 TFLOPs of performance.

If we assume that each CPU thread is capable of performing a single floating
point operation per clock cycle and runs at 4 GHz, and a CPU has 64 cores and
128 threads, we can estimate that this machine is roughly capable of 0.512 TFLOPs
of performance. While this calculation is not completely accurate, it is clearly at
least an order of magnitude slower than our GPU example.

In Figure 10.3, we can see a rough depiction of the structure of the A1oo
chip. This contains many thousands of individual processors along with separate
on-device memory. Processors are grouped into SMs (Simultaneous Multiproces-
sors), which are also grouped into blocks. There are multiple separate memory
chips with their own memory controllers to facilitate both a high capacity of

memory and a high bandwidth.

5 Teraflops - 102 floating-point op-
erations per second.

¢ P. Kharya, “TensorFloat-32 in the
A100 GPU Accelerates Al Training,
HPC up to 20x,” 2020.

Figure 10.3. This shows a hardware
diagram of the A100 GPU. One can
immediately see there are many
individual processors (shown in
small green blocks), which are
called CUDA cores or SPs. Addi-
tionally, one can see that the GPU
has its own dedicated memory on-
device, along with shared cache
layers between the processors. Pro-
cessors exist in a group called an
SM - Simultaneous Multiprocessor.
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The diagram above can be zoomed in to show a single SM unit, as seen in
Figure 10.4. This SM contains its own lower level caches, independent of other
SMs. Additionally, each unit has its own set of registers allowing them to execute
independently. The processing units (in green), are optimised for high throughput
arithmetic, and are not as capable as a generic CPU core. However, the purpose
of these cores is to maximise throughput, not generality or latency.

10.2  GPU Vendor Quverview

Each manufacturer has differing architectures and programming models to sup-
port their GPUs. The most popular of these is NVIDIA and the CUDA program-
ming model, which is NVIDIA’s proprietary platform for programming and
using their GPUs. AMD has ROCm, which is a software stack for programming
on their GPUs. Intel has also been developing oneAPI, which they intend to be
useful across different hardware applications.

The main difference between CUDA and the other software stacks is that
CUDA is proprietary, unlike the open source ROCm and oneAPI. There is also
the OpenCL project which aims to provide an API for programming across many
devices, including GPUs from different manufacturers and even CPUs.

For this book, we are choosing CUDA as our vehicle to explore GPU program-
ming, as it is the most fully-featured and supported of the software stacks. Many
modern HPC clusters will have NVIDIA GPUs available, and they have the vast
majority of the market share of the desktop GPU market.

Skills from learning to use CUDA, should be applicable to other software stacks,
but know that there is a learning curve when transitioning from one platform to
another.

10.3 High Level Introduction to CUDA

CUDA is an API primarily designed to work with languages such as C, C++ and
Fortran. However, the Julia ecosystem has maintained, developed and built the
CUDA.jl7 package. We will extensively use this package to interact with our GPU.

7 T. Besard, C. Foket, and B. De Sut-
ter, “Effective Extensible Program-
ming: Unleashing Julia on GPUs,”
IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4,
pp- 827-841, 2019.
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Figure 10.4. A single SM showing
multiple cores contained within.
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10.3.1 Installing CUDA.jl

Begin by verifying your current machine has an NVIDIA GPU. On Windows, one
can use the Task Manager to do this:

o Open Task Manager (Ctrl+Shift+Esc).
e Expand to “More Details” with the button in the lower left-hand corner.
e Switch to the “Performance” tab

e In the left-hand column, there should be an option called GPU. Check the
name of the GPU and ensure it says “NVIDIA” and note the device name.

e If an older card, or a mobile card for a laptop, search online® for the CUDA
Compute Capability of your card (e.g. the NVIDIA 1080Ti has a compute
capability of 6.1.)

On other operating systems, one can use the command line tool - “nvidia-smi”’ - to
check the installed device. If this is not available, then you likely do not have an
NVIDIA GPU, or you have not installed the NVIDIA proprietary drivers. If one
has access to a machine with an NVIDIA GPU, you can remote into the machine
with SSH and follow along there.

If you have a much older machine, you should find out the compute capability
of your device. A low compute capability can severely limit the available features
one can use. Anything above a CUDA Compute Capability of 5 should be enough
for our purposes in this book.

To add the package, run:

using Pkg; Pkg.add("CUDA")

This will add the Julia CUDA libraries, however, it will not install the necessary
NVIDIA libraries. Fortunately, instead of having to manually install the CUDA
SDK, Julia’s package manager enables artefacts to be downloaded that can replace
this step. These artefacts are known to be compatible with CUDA.jI and only need
to be downloaded once. To start this process, run the following;:

using CUDA
CUDA.versioninfo()

This will download all the necessary dependencies needed for CUDA.jl to func-
tion.

8 A list can be found here - https:
//developer.nvidia.com/cuda-g
pus.


https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
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(Optional): If you want to make sure everything will work correctly on your
machine, you can run the tests for the package using:

using Pkg;
Pkg.test ("CUDA")

However, one should make sure that Threads.nthreads () is greater than 1
for this test as it can take a very long time to complete, even with multiple
threads.

10.3.2  First Steps with CUDA.jl

One installed, we can begin to explore how to use CUDA. Let’s test out a vector
addition by using the in-built map! function.

julia> n = 1 000 000;

julia> a rand(Float32, n);

julia> b rand(Float32, n);

julia> c similar(a);

julia> array test!(c, a, b) = map!(+, c, a, b)

array test! (generic function with 1 method)

julia> @btime array test!($c, $a, $b);
467.979 ps (0 allocations: 0 bytes)

Here, we are storing the result of the addition of a and b in the array c.
In order to use the GPU, we need only convert the CPU arrays (a, b and c) into
CUDA arrays, using the cu function:

julia> a gpu = cu(a);
julia> b gpu = cu(b);
julia> c_gpu = similar(a_gpu);

This function copies an array over into the local memory on the GPU. We can
now perform the same operation, but instead using our GPU arrays:

julia> array_test!(c_gpu, a _gpu, b gpu);

Note that this will take a long time on the first execution due to the compilation.
After the first run, it should be fast.

We can copy the c_gpu array back to the CPU using Array to compare the
results to see if we get the correct answers:
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julia> using Test

julia> c_cpu = Array(c_gpu);
julia> @test isapprox(c, c_cpu)
Test Passed

We use the isapprox function since we are likely to encounter some floating
point differences between the CPU and the GPU. This function ensures that the
values are within acceptable limits to be considered equal.

One thing to notice here is that we did not change the function that performed
the calculation. Instead, we only used broadcasting (via the map! function) and
regular Julia functions. Under the hood, CUDA.jl defines specialised functions
for performing these operations and is able to compile a kernel® from the native
Julia code. This is one of the core strengths of using Julia to program GPUs, one
can write generic code that can run on both CPUs and GPUs, simply by changing
the types of the array.

Before we benchmark this function, it is important to discuss how operations
occur on a GPU. Firstly, most operations that occur on a GPU are performed
concurrently (or asynchronously) to operations on the CPU. The CPU simply
launches a kernel (a program) to run on the GPU and continues with operations.
One must perform a blocking operation to wait until a kernel has finished comput-
ing to properly benchmark the execution time. To start with, let’s just benchmark
the function how we always would:

julia> @btime array_test!($c_gpu, $a _gpu, $b gpu);
4.903 us (41 allocations: 2.19 KiB)

However, if we wrap our code in a function which forces synchronisation, then
we can measure the true cost of using the GPU:

julia> @btime CUDA.@sync array test!($c_gpu, $a gpu, $b gpu);
21.702 ps (41 allocations: 2.19 KiB)

We can see that the time taken is now much longer. This is a more accurate bench-
mark for this function. One should always make sure that when benchmarking,
one is not just measuring the time taken to launch the kernel.

From the benchmarks, one can see that the GPU was able to perform this
task around 12 times faster than the CPU (single thread). Figure 10.5 shows
the comparison between the single core CPU speed and the GPU performance,
varying with system size.

9 A kernel is a program/algorithm
that operates on a GPU.
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From Figure 10.5, we can also deduce that the time taken to launch a kernel is
between a hundredth of a millisecond and a tenth of a millisecond. It is not worth
using a GPU to perform operations on this scale unless you have a significant
amount of work for it to do. We can see that we need to use vectors of a size of
around 10° to see a significant difference for the addition.

The performance increase may not seem like much on this graph, but it is
important to remember the log-log scale. We are often seeing a 10 to 20 factor of
performance increase on the GPU. This sort of performance difference throughout
an application can mean the difference between the code taking multiple weeks
to complete, to being able to be executed in a single day.

Hopefully this example demonstrates that Julia makes is relatively straightfor-
ward to write code for the GPU, provided that we can translate our algorithms to
use broadcasting operations. This has the added benefit of being able to switch
the types of our data and run code on the different devices. The CUDA.jl library
can even compile native Julia functions into a CUDA kernel.

Why was it important to use broadcasting? This is because accessing elements
of a CUDA array is very slow as indexing operations are calculated on the CPU,
requiring synchronisation between the CPU and the GPU. This causes a huge
performance hit. Scalar indexing is often disallowed by default because it is almost

Figure 10.5. Comparing FP32 vec-
tor addition on a CPU against
a GPU. The GPU used was the
NVIDIA 1080ti.
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always not what you want to be doing and causes huge performance hits. One
may see this error when switching your data types into CUDA arrays:

julia> a gpu[l]

Error: Scalar indexing is disallowed.

Invocation of getindex resulted in scalar indexing of a GPU array.

This is typically caused by calling an iterating implementation of a method.

Such implementations *do not* execute on the GPU, but very slowly on the CPU,
and therefore are only permitted from the REPL for prototyping purposes.

If you did intend to index this array, annotate the caller with @allowscalar.

This is the most common reason why functions from other libraries are not
compatible with CUDA. For example, using the eig function from LinearAlgebra.jl
to find eigenvalues of a matrix does not work, as the underlying implementations
use scalar indexing. This incompatibility is the largest downside of using CUDA.jI
and GPUs in general. Often, one will have to find the correct library or function
to use, which is compatible with CUDA. Thankfully, the CUDA.j! library includes
the entire set of C functions which can be used with your arrays, which means
there is no reason to move to C to find any functionality missing in Julia.

If an algorithm explicitly requires scalar indexing, one can write one’s own
CUDA kernel, this will be covered in the next section.

10.4 CUDA Kernels

When writing code for the GPU, the best practice is to first try and use array
programming, which can be executed on either the CPU or the GPU. This code
is easy to test, and the tests can be run on any machine, without the GPU. If the
code works correctly on the CPU, it is highly likely to also work on the GPU - as
long as there are no errors. However, there will always be edge cases when your
algorithm cannot be implemented in terms of array and broadcast operations,
or it is highly inefficient to do so. In these cases, you may have to write the GPU
kernel itself.

A GPU kernel is a self-contained program that can be run independently across
many cores of a GPU. Traditionally, GPUs could compile shaders, which were able
to calculate the colour of a single pixel on the screen. This shader would be run
for every pixel to colour a final image. Kernels are just like these old shaders, but
perform generic computation, instead of a graphics processing routine. Instead
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of iterating over each unit of work, we simply describe how to do a single piece of
the work, given some identification of what work one should be doing.

Let’s take the example of writing a basic shader which performs vector addition.
Luckily, even though CUDA is designed to be a C-like language, we are able
to write all of our CUDA code in native Julia (with the help of CUDA.jI for
compilation). As a starting point, let’s write a basic for loop that would be
executed on the GPU:

function basic vec add!(c, a, b)
for i in eachindex(c, a, b)
@inbounds c[i] = a[i] + b[i]
end
return nothing
end

This code will add the vectors a and b together and store the result in the vector
c. Our CUDA kernel should make each core perform one of these inner loop
additions. We are able to specify which core should do the work through the use
of some special variables which are provided to each core when the kernel is
scheduled for execution. Take the following example:

function basic _vec add cuda!(c, a, b)
i threadIdx().x
if i length(c)
@inbounds c[i] alil] b[i]
end
return nothing
end

Here, we have used the threadIdx function which gives us a named tuple with x,
y and z components. This is an identifier to the core as to which thread of work it
is assigned. CUDA uses a thread based model for execution; each thread executes
the code in the kernel independently of one another.

We can compile and launch this kernel on the GPU with the following syntax:

julia> a CUDA.rand(128); b CUDA.rand(128); c similar(a);
julia> @cuda threads=length(c) basic_vec_add cuda!(c, a, b);
julia> isapprox(c, a.+b)

true



We can see that our kernel worked as expected, despite the use of scalar
indexing. The @cuda macro compiles and launches the function specified. We
additionally have to specify the number of threads used as the length of the vector

input. The CUDA programming model uses a geometric partitioning system.

The system can be explained as:

e Each GPU has a 3-dimensional grid of blocks.

e Each block contains a 3-dimensional group of threads.
e Each thread is executed independently.

In our case, we restricted the execution to a single dimension x, but this just makes
the number of elements in the y and z dimensions equal to 1. One important
restriction in the CUDA programming model is making sure that a block has a
maximum number of possible threads. This limit is usually 1024 threads. As we
are often dealing with larger arrays, we need to make use of multiple blocks to
allow execution across more threads than this limit.

Block 1 Block 2

Thread ID | 1 2 3 4 1 2 3 4

Array
Index

Looking at Figure 10.6, we can visualise how the indexing scheme works in
a single dimension. Each block has 4 assigned threads whose indices begin at 1
and end at 4. Each block also has an index which goes from 1 to 2. This is enough
to map to each element in the example 8 element array. We can adjust our kernel
to take into account block sizes:

function basic vec add cuda!(c, a, b)
i (blockIdx().x 1) blockDim().x threadIdx().x
if i length(c)
@inbounds c[i] = a[i] + b[i]
end
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Figure 10.6. A kernel launched
with a grid dimension of (2,1,1)
and a block dimension of (4,1,1).
This will directly map onto the 8
elements of the input array.
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return nothing
end

Now, we write a wrapper around the add function which works on CUDA
arrays, which will automatically calculate the number of blocks and threads
needed.

function basic _vec add!(c::CuArray, a::CuArray, b::CuArray)
n = length(c)
@assert n == length(a) == length(b)

num_threads = min(1024, n)
num_blocks = cld(n, 1024)
@cuda blocks=num_blocks threads=num_threads basic vec add cuda!(c, a, b)

return nothing
end

Notice that for an input of length 1029, a total of 2048 threads will be launched.
It is now up to you as the programmer to decide how many threads to launch.

A common pattern seen throughout custom kernel launches is to grab the
number of threads from a configuration provided by CUDA for a compiled kernel.
This is then used to assign blocks.

function basic vec add!(c::CuArray, a::CuArray, b::CuArray)
n = length(c)
if n==20
return nothing
end

@assert n == length(a) == length(b)

kernel = @cuda name="basic vec add" launch=false basic vec add cuda!(c, a, b)
config = launch_configuration(kernel. fun)

threads = min(n, config.threads)

blocks = cld(n, threads)

kernel(c, a, b; threads=threads, blocks=blocks)

return nothing
end

One should note that CUDA also has maximum sizes for blocks and grids.
However, when getting to the grid level, one is very unlikely to have an array
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large enough to cause an issue. For example, the maximum dimensions on this
graphics card are:

julia> CUDA.max block size

(x = 1024, y = 1024, z = 64)

julia> CUDA.max grid size

(x = 2147483647, y = 65535, z = 65535)

The maximum size of a block is the product of the dimensions:

julia> reduce(*, CUDA.max_block size)
67108864

As long as the dimensions you choose to multiply to a number less than the
above, you do not need to use the grid.

Now there are some things that you may have noticed that seemed to reduce
performance. For example, we are including an if statement in our kernel. This
is necessary as the length of the array may not be easily split up into blocks. We
are manually performing our bound checking here to ensure that we can safely
read and write from memory. This is true in the case of an array of length 1029,
which would have 1023 threads running which would index outside the array. To
ensure this does not happen, we must guard with the manual bounds checking.

Additionally, CUDA imposes on us the restriction of returning nothing from
the kernels. All memory allocations must be done outside the kernel. This usu-
ally means implementing your kernel as an in-place operation on pre-allocated
memory. If you want to provide a better API for users and abstract away the
allocations, one can wrap the call to the kernel:

function basic vec add(a::CuArray, b::CuArray)
C similar(a)
basic vec add!(c, a, b)
return c

end

Additionally, if the memory is only needed temporarily, you can create it outside
the function and release it later. If you are writing the critical loop section of your
code, it is often better to write the main algorithm with pre-allocated caches and
then create a wrapper (like the one above) to optionally use if you do not want
the users of the code to manually manage their cache. This gives the option for
re-using a cache in a hot-loop.
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10.5 CUDA Libraries

As writing efficient GPU kernels is extremely difficult, CUDA provides many
libraries for solving common problems. The CUBLAS library has many routines for
highly optimised BLAS'® which run on the GPU. Here is an overview of libraries
which CUDA provides:

e CUBLAS: Optimised BLAS routines, which involves matrix multiplications and
vector calculations.

e CURAND: Library for random number generation on the GPU. This is useful for
Monte-Carlo simulations.

e CUFFT: Library for calculating Fast Fourier Transforms.

e CUSOLVER: Library for solving linear algebra problems, such as diagonalising a
matrix (eigenvalue and eigenvector decomposition).

e CUSPARSE: Library with support for using sparse matrices.
e CUDNN: Optimised routines for deep neural networks.

e CUTENSOR: Accelerated tensor linear algebra library providing tensor contrac-
tion, reduction and element-wise operation.

Many of the BLAS routines already have a higher level interface, for example,
the matrix multiplication. One can multiply two matrices very easily using;:

julia> n 2;

julia> a CUDA.rand(Float32, n, n);

julia> b = CUDA.rand(Float32, n, n);

julia> CUDA.@sync ¢ = a*b

2x2 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
0.298787 0.213741

0.109655 0.313506

Or the in-place version:

julia> using LinearAlgebra

julia> mul!(c, a, b)

2x2 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}:
0.298787 0.213741

0.109655 0.313506

'° Basic Linear
Subprograms- BLAS

Algebra
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Since each CUDA array has its own type - the CuArray - Julia can dispatch to
the most optimised routines. In this case, CUDA.jI creates a dispatch for the mul!
function in LinearAlgebra.jl which calls the underlying CUDA. CUBLAS.gemm! which
stands for ““Generic Matrix Multiply”*.

Naming conventions in CUDA are incredibly old-fashioned, and it is not very
clear what each function does. One will have to check the documentation' to see
which function you need for your code. Even then, it is often difficult to decipher
exact what algorithms are available. Creating high quality, well-documented,
high-level front-end APIs for CUDA.jl is an ongoing process. Fortunately, many
packages provide GPU acceleration, using these underlying libraries. You will
find many GPU implementations in packages like NNLibCUDA.jl, which is a
dependency of Flux.jl - one of the largest machine learning libraries in Julia.

Many of the high-level BLAS operations already extend the LinearAlgebra.jl
functions to work with types from CUDA.jl. Try just changing the input types
to your existing code. If you find errors, track down the functions which are not
implemented and find a suitable GPU compatible replacement. This may mean
having to write your own CUDA kernel.

10.6  Benchmarking & Profiling

Benchmarking GPU code can be a bit tricky. When you are launching a CUDA
kernel, this will simply send the program to the GPU, and not wait for it to finish
executing. Let’s take the following example:

julia> a = CUDA.rand(256,256); b = similar(a);

julia> @benchmark begin $b .= $a .* $a end
BenchmarkTools.Trial: 10000 samples with 8 evaluations.

Range (min .. max): 3.675 ps .. 1.339 ms | GC (min .. max): 0.00%

Time (median): 4.130 us i GC (median): 0.00%

Time (mean + 0): 4.278 us = 13.346 us GC (mean = o): 3.10% =
B e

RS =

3.67 pus Histogram: frequency by time 4.81 ps <

Memory estimate: 1.84 KiB, allocs estimate: 25.

This only measures the time taken to launch the kernel, not the time taken to
execute the kernel. We can re-run this using the CUDA.@sync macro:

" One can track down the ac-
tual implementation by using the
@which and @edit macros, which
allows one to find the source code
for the method. This can also be
done with the use of debugging,
but this is very slow in Julia.

12 NVIDIA, CUDA Toolkit Documen-
tation, https://docs .nvidia. co
m/cuda/index.html, Accessed on
6th July 2022, 2022.

. 99.02%

0.99%


https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
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julia> @benchmark CUDA.@sync begin $b .= $a .* $a end
BenchmarkTools.Trial: 10000 samples with 3 evaluations.
Range (min .. max): 9.091 pys .. 23.074 pus i GC (min .. max): 0.00% .. 0.00%

Time (median): 9.795 s i GC (median): 0.00%

Time (mean * 0): 9.833 ps + 498.364 ns GC (mean = 0): 0.00% + 0.00%
_lill- .

=l e e R, =

9.09 ps Histogram: frequency by time 11.4 pus <

Memory estimate: 1.84 KiB, allocs estimate: 25.

Which shows us that the kernel actually took a lot longer to run. CUDA.jl also
provides the CUDA.@elapsed and CUDA.@time functions which can be very useful
for measuring the performance of your code.

Remember that when you are benchmarking the GPU code, you should be
sure to call CUDA.@sync to ensure that you are measuring the total time of a CUDA
kernel.

10.6.1  Application Profiling

When you have a larger application, with multiple calls to custom CUDA kernels,
it is sometimes better to profile an entire application. We can use the NVIDIA
Nsight system to profile an application. The CUDA.jl documentation'3 suggests s https://cuda.juliagpu.org/s

installing NSight Systems directly from the NVIDIA website'4. table/development/profiling/
" https://developer.nvidia.co

m/nsight-systems/get-started

Ensure that your NSight Systems installation is working correctly by typing
the following into the terminal:

nsys --version

On Windows, you will need to run the terminal as an Administrator and also
ensure that the folder with nsys.exe is in your system PATH environment
variable.

NSight Systems can be used to view the bottlenecks in your system and diag-
nose whether kernels are being too frequently and hurting performance.


https://cuda.juliagpu.org/stable/development/profiling/
https://cuda.juliagpu.org/stable/development/profiling/
https://developer.nvidia.com/nsight-systems/get-started
https://developer.nvidia.com/nsight-systems/get-started

10.7 Tips

In order to fully utilise the additional resources provided by using a GPU, we
must keep in mind some causes of poor performance.

10.7.1  Copying Data

Remember that a GPU has its own local memory, and any data processed by the
GPU, must first be transferred onto the device memory. To make the terms clear,
we refer to the main memory that the CPU has access to as the host memory.
Often, you will see the CPU (and the rest of the machine) referred to as the host.
The GPU only has access to its own memory, called device memory. It can take a
long time for the host to copy memory to the GPU, and vice versa. This is why it
is strongly recommended that all possible processing is done on the GPU until it
is needed back on the CPU.

If you have a function that performs much better on the GPU, you must consider
whether it is worth transferring the data to the GPU, processing it there, and then
transferring it back to the CPU. Sometimes this will be beneficial, as the speed-up
is so significant that the copy times are usually worth the cost. However, one can
consider streamlining the processing of the data, so that it all occurs on the GPU.
Even if one part of the process is actually faster on the CPU, it may be worth
implementing a GPU version in order to keep the memory on the device and
avoid copying.

10.7.2  Launching Kernels

An individual kernel launch can have quite a high latency, especially when com-
pared with launching a CPU thread. While the CPU is constructing the kernel
and sending it to the GPU for scheduling, the GPU may be quite idle. Launching
many smaller kernels can incur a huge overhead cost, and cause the GPU to be
idle for a large amount of time. If profiling with the NVIDIA tools, this is the
performance bug to look out for.

To remedy this, one should attempt to fuse as many kernel calls together, and
group the work into larger items. For example, if one is using array programming,
make full use of fused broadcasting:

10.7. TIPS
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y
y
y . X .3
y .= exp.(y)
# use a single statement instead
y exp.(x.*sin.(x) .+ x .” 3)
While it may look better in the source code to split up the operations into multiple
lines, it is often better to put these calls on a single line. The first section calls 4
kernels, whereas the single line only calls one kernel. If the call is extremely long,
write a function for a single element and broadcast it across the entire array:
_f(x) exp(x*sin(x) X X X)
y .= _f.(x)

We will give an example of this optimisation in Section 10.8, by loading our
kernel with work.

10.8 Case Study: Monte-Carlo Simulations

Here, we will provide an example of porting a Monte-Carlo random walk simula-
tion to the GPU, such as the one shown in Figure 10.7. As with the earlier advice
in our book, we will write a function that performs a single step in the random
walk, shown in Algorithm 10.1.

function mc_random walk step(x, sigma)
return x randn(typeof(x)) sigma
end

Now imagine that we want to study some population level statistics, by running
many of these walkers in parallel. Despite us choosing a very simple example,
Monte-Carlo simulations are an extremely useful tool for computational science.
Our aim for this exercise is to perform some number of steps of this Monte-
Carlo update for many independent walkers and obtain an array with their final
positions in.

We can implement a non-allocating array version of our desired algorithm:

We can run our algorithm on the CPU easily:

julia> n=2048; x zeros(Float32, n); vy similar(x);
julia> sigma = 1.0f0; steps=100;
julia> mc_random walk!(y, x, sigma, steps);

—~
—
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Algorith|
Monte-(
starts-&t|
adds unbigsed Gaus ian randorq

noise, repgesenting agingle timg)
step of the walk. ¢

Figure 10.7. Shows an example of
a continuous space, discrete time
random walk, starting at the origin.
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function mc_random walk!(y, x, sigma, steps) Algorithm 10.2. This is one way

# Copy the initial values from x into y of writing our random walk for an
entire array of walkers, performing

}flo;‘=txin 1:steps the array operations in step.
y .= mc_random walk step.(x, sigma)
end

return nothing
end

We can extend this to run on the GPU just by changing the types:

julia> x gpu = cu(x); y gpu = similar(x gpu);
julia> mc_random walk!(y gpu, X gpu, sigma, steps);

Let’s benchmark the CPU version:

julia> @benchmark mc_random walk!($y, $x, $sigma, $steps)
BenchmarkTools.Trial: 6429 samples with 1 evaluation.

Range (min .. max): 759.138 us .. 1.039 ms ' GC (min .. max): 0.00% .. 0.00%
Time (median): 775.499 us i GC (median): 0.00%
Time (mean % o0): 776.457 us = 6.970 us ' GC (mean = o): 0.00% = 0.00%
_‘—_
-
759 us Histogram: frequency by time 793 us <

Memory estimate: 0 bytes, allocs estimate: 0.

And the GPU version:

julia> @benchmark CUDA.@sync mc_random walk!($y gpu, $x gpu, $sigma, $steps)
BenchmarkTools.Trial: 4602 samples with 1 evaluation.

Range (min .. max): 919.045 us .. 13.540 ms | GC (min .. max): 0.00% .. 88.97%
Time (median): 1.063 ms i GC (median): 0.00%
Time (mean % 0): 1.083 ms + 363.878 us . GC (mean = 0): 0.97% + 2.67%
i -
|
919 ps Histogram: frequency by time 1.21 ms <

Memory estimate: 142.00 KiB, allocs estimate: 2525.

We see that our GPU version is actually faster (for this number of walkers),
however, there is actually a bit of a performance bug under hood that should be
addressed. Upon each of our for loops, we are calling a new kernel. Instead, we
should try to fuse these kernels together:

Now we can try and benchmark this again:
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function mc_random walk(x, sigma, steps) Algorithm 10.3. Writing out the
for t im 1:s teEs loop for an input argument and in-

x = mc_random walk step(x, sigma) creasing the work done on each cy-

end cle of the loop.
return x
end
function mc random walk fused!(y, x, sigma, steps)
y .= mc_random walk.(x, sigma, steps)
return nothing
end

julia> @benchmark CUDA.@sync mc_random walk fused!($y gpu, $x _gpu, $sigma, $steps)
BenchmarkTools.Trial: 8412 samples with 1 evaluation.

Range (min .. max): 487.146 ps .. 922.482 ps GC (min .. max): 0.00% .. 0.00%
Time (median): 580.525 us { GC (median): 0.00%
Time (mean % 0): 588.867 us + 30.854 pus GC (mean = o): 0.00% = 0.00%
-‘-
- .. =
487 us Histogram: frequency by time 702 pus <

Memory estimate: 4.47 KiB, allocs estimate: 77.

We have fused all the kernel calls together. This minimises the amount of
overhead for scheduling, and allows the GPU cores to stay busy for the duration
of the computation. This small change allowed us to dramatically improve the
performance of our GPU code.

If the kernel calls are very large (e.g. a large matrix multiply), the overhead in
calling multiple kernels is only a very small portion of the total time.

10.8.1 Custom Kernel

It is a good exercise to write a custom kernel and compare the execution to the
broadcasted notation. Our kernel will be straightforward:
We can now benchmark on the same data:

julia> @benchmark CUDA.@sync mc_random walk gpu!($y gpu, $x gpu, $sigma, $steps)
BenchmarkTools.Trial: 7613 samples with 1 evaluation.

Range (min .. max): 585.835 us .. 879.780 us . GC (min .. max): 0.00% .. 0.00%

Time (median): 642.655 Us i GC (median): 0.00%

Time (mean * o0): 651.092 us = 30.676 pus . GC (mean = 0): 0.00% + 0.00%
il _

—_— e el I T et m
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function mc random walk cuda!(y, x, sigma, steps)

end

i = (blockIdx().x - 1) * blockDim().x + threadIdx().x
if i > length(y)
return nothing
end
@inbounds pos = x[i]
for t in 1:steps
pos += randn(typeof(pos))
end
@inbounds y[i] = pos
return nothing

function mc_random walk gpu!(y, x, sigma, steps)

end

n = length(y)
@assert n == length(x)

Algorithm 10.4. A custom writ-
ten kernel for running a random
walk simulation within a CUDA
kernel, together with a wrapper
which decides on how many blocks
and threads to use.

kernel = @cuda name="mc walk" launch=false mc random walk cuda!(y, x, sigma, steps)

config = launch_configuration(kernel.fun)

threads = min(n, config.threads)

blocks = cld(n, threads)

kernel(y, x, sigma, steps; threads=threads, blocks=blocks)
nothing
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586 us Histogram: frequency by time 767 us <
Memory estimate: 4.11 KiB, allocs estimate: 76.

We can see that our custom kernel did not perform as well as our simpler
approach. It is clear that writing a custom kernel is not necessary to achieve
performance gains, as we can rely on the compiler to generate fast code for the
GPU, using the array notation. It is entirely possible to rewrite our kernel to be of
a similar performance to our previous implementation.

10.9 Exercises

Exercise 10.1. Implement your own custom random walk CUDA kernel which
performs similarly to the original fused implementation in Algorithm 10.3. See
how close you can get to the similar performance. (Hints): Try to use different
random number generation (from CURAND).

Exercise 10.2. Take some of your existing code and port it to the GPU using
the inbuilt functions, and try to write a custom kernel for the more complicated
operations.
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11 Version Control

Version control is an essential part of modern software development. It is an
indispensable skill for a modern software engineer, and a skill that is essential for
any modern software development job. This skill is less common in academia,
but researchers are slowly coming to terms with these new systems, and the huge
benefit that comes with them. Many researchers will not have heard of the term
“version control”, but this is because it is the more general term given to tech-
niques and skills for versioning your software. Often times it is also called “’source
control”. Like how “Google”” has become synonymous with search engines, “’Git”
is the equivalent for version control. “Git” will likely ring more bells for many
researchers, but few use it. The reason that Git is so synonymous with version or
source control, it has a huge, dominant, market share. From now on, I will use Git
as the example when I talk about source control, however, one should know that
there are other alternatives that do similar things, but they are often servicing
niche corners of the market".
Before we go any further, we should answer what version control actually is:

Version control is a system or set of systems responsible for managing changes to
computer programs or documents, or other collections of information.

Many researchers are familiar with version control, when they write academic
papers. It is not uncommon, to have many versions of the same file labelled
“mainvi.tex”, “mainv2.tex”, “mainvzfinal.tex”” or “mainvafinal2.tex”. However, this
problem becomes very unwieldy, very quickly. This is hard enough for a single
person to manage, it becomes a living nightmare when one has to share one’s
work with others. Papers are often emailed around with version numbers, only
allowing a single person to write at a time. This is still common and widespread

to this day, despite the solution having been around for multiple decades. As

* As an example, Subversion is of-
ten used in games design, as it has
much better support for keep track
of large assets such as high quality
textures or complex 3D models.
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of writing this in 2022, there is not a single reason for keeping this old system
of working, as there are far more professional ways to work. In the past, using
systems such as Git, have required a large learning curve, however, now it is easier
than ever for people to work with, to help them be more productive.

11.1  What is Git?

If labelling your files manually with a version has so many problems, and is not a
scalable solution when working with other people, what is the alternative? Here,
we will discuss the way that Git handles these issues, as it is the most common
software tool, and the industry standard.

11.1.1  Repositories

We will first introduce the idea of a repository. A repository is just a fancy name
for a folder. That'’s it. Nothing special to a repository, other than it is a defined
folder, for which you want to keep track of changes to the software. What is
special about a git repository, is that there is a special, hidden, folder inside your
repository, which keeps track of versions for you behind the scenes. One never
actually has to interact with this folder, but it is where the changes and history of
the files in the folder are stored. The way that one interacts with this tool is usually
through the Git software itself, which commonly takes the form of a command
line interface. From the command line, you can tell Git to take a snapshot of
your code, which will look at your files and see what has changed since the last
snapshot, and keep track of these. Git is smart, in the sense that it will only store
the differences between your files, instead of another copy of the entire file. Not
only is this efficient, but it will have more benefits that we will talk about later.

11.1.2 Commits

A snapshot of your software is called a commit. This is just the current state of
your repository and all the files within. Each file does not exist separately to every
other file, and one tracks the version of the entire repository, not just the version
of one single file. The reason for this is that many files will often interact with
one another, meaning that they are tightly coupled. One cannot have an accurate
version of one file, without also knowing the version of the files that it interacts



with. Think of changing a variable name in one file, it should also be changed
in another, or else the software will not run. This is why we have the idea of a
repository, instead of tracking just individual files.

A commit is just a single snapshot of your code. Your repository begins in an

empty state, and usually you make an initial commit with the first files added.

Since Git just works with files in a folder, one can turn an existing project into a
Git repository, either by initialising a repository in the desired folder, or copying
existing files into a new repository. Git will keep track of your entire history of
commits. This is the “log’” of what has happened. A commit is not just a snapshot
of the current state of your code. It also does not happen automatically every

day, like a backup system would. A commit is a purposeful act by the developer.

As such, one also accompanies a commit with a small message, describing what
changes were made in the current commit. These small messages help navigate
the history, if you ever need to look back at old versions.

As an example, imagine that you have written some code to provide some

functionality. After a while, you decide that you don’t need it and delete the code.

You commit this change with a message such as ““removed some_func() from the
code base”. Later, even weeks down the line, you realise that that old function
would have really helped now. If you were not using Git, you would be out of
luck, and would have had to write it again from scratch. Worse, is that you would
have feared losing any old code, so you keep it around, cluttering your folders
and files. However, in Git, removing code is never a concern, as Git tracks the
changes, including the deletion itself. All one has to do, is navigate back to the
commit where the function was removed and one now has access to the old
code. Nothing has been lost. You can keep your files and folders clean and free of
different versions of your code, without fear of losing any information down the
line as it is all kept in the history.

11.1.3 Branches

So far, we have talked about a repository and commits, which are only two parts
of what Git provides. The third ingredient which is very important to understand
is the concept of branches. A branch is just a collection of commits arranged in a
timeline. When we were talking about the history of commits before, we would
implicitly be calling that history the “main” branch, as it contains the main version
of our software, and the history. The main branch was also historically called

11.1. WHAT IS GIT?
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the ““master” branch as it served as the “master”” copy of your code. The terms
“master” and ““main”’ branch are interchangeable, but modern projects tend to
use “main”. This branch is the most important one to know about, since one can
reap the majority of the benefits from Git, just by utilising the ““main’’ branch in
the previously described manner.

Imagine being able to track every single change made to a project, right back
to the first line of code. This gives you a huge amount of safety when it comes
to versioning, as it becomes very hard to lose progress. However, if one does not
commit one’s code regularly, the tool becomes pretty useless. Commits should
be small and frequent. A common meme amongst programmers is to commit
changes across tens of files with thousands of lines of code changed, with the
simple message ““minor changes”. This is very bad practice, as it removes many of
the benefits of using Git in your projects. This also does not scale well to larger
software projects where one has to work with many other people. Even if you
are just working by yourself, it is often good to practice the skill of committing a
smaller number of changes, more frequently, with descriptive commit messages.

Git was designed from the ground up to be useless for many people working
in a team, on the same piece of software at the same time, often in completely
different locations. It is mostly designed without thinking about a shared fold-
er/repository, so how does it manage keeping track of software versions between
multiple people? In the past, the way of dealing with this is to freeze the code of
a particular file or even the entire project while one person makes changes. Only
when that person has finished, can another person work on it. This is exactly how
academics write papers, by freezing the version of the paper and sending via
email, only continuing to work on it once a colleague has completed their changes
and sent back an updated version. Git takes a much smarter approach to this.

Before we abstract away to the idea of multiple people working on the same
project, let us look at a similar problem with just a single developer. Imagine you
are working on a feature that will take quite a long time to produce. For example,
you are optimising a core part of the software and the software currently does
not run. What if you needed to quickly use the previous, slower, version of the
software to get a figure or a graph for a presentation? Do you completely undo the
changes you have been making and revert back to the previous state while you
use that version of the software, losing the progress you have made? The answer
is no. In Git, one uses another branch when developing a feature that potentially
can be breaking until the feature is complete. This leaves the main branch to be in



a useable state at any time. Once a feature is complete, one can merge the changes
on the separate branch back into main, upgrading the functionality. This ensures
that main is in a useable state at every point in time, and at no point has a feature
that is “in development”, and breaks the code.

Before we said that a branch is just a collection of commits. In particular, it is
useful to logically group commits together based on their purpose. Commonly,
people use the idea of a branch to be a collection of commits that provides a
certain feature, or fixes a specific bug. The scope of a branch should be somewhat
limited to the feature, only containing commits and changes pertaining to that
purpose. One usually names a branch according to this purpose, such as ““add-
unit-tests-for-function-x"’, which specifies the scope of the changes to be made in
that branch. The reason that it is called a branch is that one can view the main
branch as the trunk of a tree. This is the perfect®, master copy of your code. One
can then branch off the trunk (branching off main), which starts a new, parallel
timeline to main, containing the entire history of main at that point. Creating a
new branch starts at the version of the current state of main. Any commits made
from this point will be on your new branch, and not exist in main.

Branching off, also provides the same stability as a code freeze, as the developer
is now unaffected by any changes in main. This means one can focus on developing
a certain feature, without worrying about the other changes in the program. When
the feature is finished, one can merge these changes back into main.

11.1.4 Merges

One reason why academics usually work on a paper at the same time, is that the
process of combining changes from two people into a single file is very labour
intensive and error-prone. For anyone that has done this, they know the pain
of having to read over multiple sections and copy each individual small change,
even if it is just a spelling change.

Git takes a much smarter approach. As the developers have been committing
their code over time, only tracking the changes between files, Git can intelligently
know if two versions of the same line of code in the same file have been indepen-
dently changed, and flag this as a ““merge conflict”. Git will not automatically
resolve these conflicts as there is no way of knowing which change was correct.
Often times, one has to manually resolve these conflicts by taking parts from
both. However, if two developers have added code in different parts of the same
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file, but not overlapped at all, then Git will know to just put both sets of changes
together. If one person wrote the introduction, and another the conclusion, then
it can just be merged automatically.

When we want to merge changes into main, if there have been no other changes
in main, since the branch was started, then there will be no merge conflicts, and all
the new changes will be put into main. However, if we were to switch branches to
main and create a new branch and merge that in before, then Git will automatically
check for conflicts. It is the duty of the developer to handle any merge conflicts
before a new merge commit is made. The majority of the time, especially when
working in small teams, merge conflicts are very rare. On the occasions when
they do occur, there are tools to make managing them painless, which will be
covered later in this chapter.

The typical workflow of a developer, is to decide on a feature to add to the code,
or a collection of changes to make. They then create a branch from main, giving it
an appropriate name for the task at hand. They then begin to develop this feature.
If the developer has to work on a different feature, they can switch back to main
and create a different branch to work on that feature, being completely isolated
from any of the changes previously made in the first branch. If this branch is
completed first, then they can merge back into main. This is commonly called a
“pull request”, as one is asking to pull the new changes into the main branch. This
is often given a special name as in larger software projects, there are normally
steps in place to ensure the quality of the code being added to the main branch.
This usually involves the review of other members of the team, and the code
needing to pass all of the unit tests3. When the developer switches back to their
previous branch, they will be unaffected by these changes. If the developer needs
these new changes to continue working, they can merge the new changes from
the main branch into their current branch. This is often called ““updating from
main”’. This gives the developer complete control of which parts of the code to
include and work on at the same time. It gives them the complete flexibility and
freedom to experiment with the code, not being afraid of breaking anything, as
they can always revert back to a previous time, or work on a different branch if
the experimentation interferes with other tasks.

3 This is discussed in more detail in
a later chapter (needs ref)
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11.2  Working with Teams

In the previous section, we described a workflow which can be used by a single
developer, who can now work on multiple features independently of one another,
without fear of one piece of work breaking another. However, this functionality
can be immediately scaled up to an entire team of people working on the same
repository. Let us know imagine that a team of people are working on the same
code base, and see what the workflow is like.

For starters, every contributor to a project has their own local copy of the
repository. Remember, this is just a folder on your local machine, with a special
hidden folder to keep track of the history of the repository. Each person can
commit to their own repository, independently of one another. This means that
changes can be made by people at the same time? How do these people share
their changes with one another? This is where the idea of a centralised or shared
repository comes into play. In Git, this is often called the ““origin”. Like the “main”
branch is the master copy of the software, the ““origin”’ is the master copy of the
repository itself. It acts as a centralised node, being able to communicate with all
collaborators in the project. In the simplest case, we have a single main branch in
the origin repository. This is often stored on a different computer in the cloud#*.
Instead of everyone working directly on this origin copy, they instead make a
local copy on their local machine. Again, this is just a folder on your computer. In
Git, we usually call this copy a ““clone”, and you will here the phrase ““clone this
repository”, which just means make a copy of it on your local machine. The major
difference between your local copy and the origin, is that they are separated and
isolated from one another, except for the local repository pointing to the origin
as the “master”” version. The developer has to manually sync changes between
the origin and the local machine. Changes are brought to your local machine by
merging the origins copy of a branch into your local version of that branch.

At the very least, the local machine and the origin both have a copy of the main
branch. As stated previous, no one should commit directly to main, especially if
working with other people. For this reason, developers will work in their own
branch. However, one can create a branch on one’s local machine, and sync this
with the origin, to create the same branch there. When the developers commit
their code to their local branch, they can choose to also ““push” the changes to
the origin, which copies the new commits from your local branch to the origin.
If people are working on the same branch at the same time, sometimes, one

4 Remember, the cloud is just a
fancy abstraction for ‘““someone
else’s computer on the internet”.
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will need to also pull changes down from the master copy into the local branch.
Remember, a “push” is sending changes to the origin and a “pull” takes changes
from the origin and applies them locally. We can simplify this process by just
calling it a synchronisation, which performs both a push and pull (usually the
pull comes first to see if there are any changes). Remember that the origin can
have a different version to your local branch, so pulling in any changes is actually
a merge, and may result in merge conflicts. However, if one developer works
on their own branches, then this becomes unlikely. The main distinction is that
merges must happen locally on a developers machine. One a merge is completed
and there are no merge conflicts, only then can the changes be pushed up the
origin.

When one creates a pull request into main, one does not locally merge into
master. Instead, one must first pull from origin’s main into the local feature branch
and solve all merge conflicts. Once this is done, then one can complete the pull
request, and merge one’s changes into the origin’s copy of main.

Notice that in this entire description, there can be multiple different people
all interacting with the origin at the same time. We have used the idea of a local
machine, but this local machine can belong to anyone. Having the centralised
origin, removes the need for any two developers to interact with one another, but
instead they can share code via the origin. No need to email code to someone!
Just add them to your repository.

This model of working is very successful, and is used on some of the largest
open source projects out there, such as the Linux operating system, which has
tens of thousands of contributors. This system is very robust if used correctly
and formalises not only the version control problem, but also the code sharing
problem.

11.3 Keeping a Clean Repository

Before starting on the basics, one should know that not every file should be
tracked and saved by Git. Especially during programming, there are many files
which are generated from your code whose version you need not care about, since
they can be generated from the source files themselves. Instead of having to wade
through these useless files, one instead uses a .gitignore file. This file is simply a
special Git file which one can list certain specific files or general extensions or
folders which Git will ignore. This means that changes are not tracked.



The types of files you ignore depend on the language used and there are often
template .gitignore files available online for most languages. If you generate your
repository using GitHub or GitHub Desktop, you will be given a dropdown list
of templates. It is highly recommended you use this.

If there are any files in your source code that contain sensitive information,
such as an API key, email address, password etc, you should not commit this file.
Remember that Git tracks your changes and so if you commit this information by
accident, even if you remove it, it will still be there in the history, requiring more
advanced Git skills to remove it. To save this from happening, all files like this
should be listed in the .gitignore file.

Additionally, any generated data or plots should also likely be added to the
.gitignore file, as it is not a good idea to commit binary data to Git, as it works best
with text based files. Furthermore, GitHub has a file size limit of 100mb, which
means that if you accidentally commit a large file, GitHub will not let you sync
with the origin, and again, one needs advanced Git skills to remove the offending
large file from your history, so that you can sync again.

11.4 Learning Git

One first point of protest is that Git is that one traditionally interacts with Git
through a command line interface (CLI). This is not very user-friendly, especially
to beginners who normally do not need to interact with a terminal® at all. How-
ever, it is a complete misnomer that you need to learn how to use the command
line interface, in order to productively use Git. Many tutorials online will teach
you how to use the command line, however, this is only the traditional way of
interacting with Git. This method has a high learning curve as one must memorise
commands to type in, along with being highly error-prone. Instead, this book will
focus on teaching how to use Git via a Graphical User Interface (GUI). This simply
replaces the most common commands with buttons instead, and streamlines the
use of Git, and makes it a much more intuitive and productive tool, accessible to
people with any amount of experience.

On every platform there are many GUI tools for Git. However, in this book we
encourage the use of Visual Studio Code, which has a Git GUI built-in. One needs
to install the underlying Git software on one’s computer, which is described in the
start of this book. On Windows or Mac, one can use GitHub Desktop6, which is a
free GUI which is one of the most simple and robust Git GUIs out there. One can
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5 Another name for a command
line. Usually these are just other
programs. On Mac and Linux, the
most common terminals are bash
and zsh, and on Windows one uses
cmd or Powershell. These are just
ways of interacting with programs
through a text-only interface.

¢ This can be supported on Linux,
but it is more difficult to set up.
Linux users will likely be better off
using GitKraken.
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easily switch or create new branches, update a branch from main, and even see
the line by line changes visually. There is a way to visually select which changes
you want to commit, along with your commit message. If you have made changes
that you do not want to be in the history, you do not have to commit them! Instead,
just disselect them from the GUI menu.

There is a huge amount of depth to git, and there are ways to do a lot of different
tasks. However, I think it is important that beginners stick to a simple workflow,
and only use the basics, as this will be the least error-prone and effective way of
using Git.

11.4.1  Recommend Git Workflow

If you are starting a new repository, you should select the appropriate .gitignore
template for your language or project. The templates provided by GitHub are
very reliable and are the recommended ones to use. If you choose to create this
repository using GitHub, you should then clone this repository to your local
machine. There are instructions for this online. If created locally, one should then
publish your repository to a place like GitHub, which provides free hosting for
both public and private repositories. Using a provider like GitHub for your origin
provides many nice features, all for free! Most importantly, it provides a backup
for all of your source code. Additionally, if you work with a team, it provides the
centralised origin from which you can share code with the rest of the team. Even
if you are on your own, this means that you can share code across many different
computers, and you need not stick to a single development machine; giving you
unparalleled flexibility in how you work.

Once a repository is created, with an origin and a local copy, one should commit
any initial files into main. This can be done little by little or all in one go. This
is for when you have an existing project, which is not tracked by Git. If you are
starting a new repository, make sure that the initial files are there, such as the
gitignore and the README? .

When you are ready to start developing, use your Git GUI software to create
a new branch from main, and give it a name specific to the feature you wish to
develop. When you have created this, publish your local copy of the branch to
the origin, so everyone knows you are working on a separate branch. Now, start
writing your code! Stop every so often to commit small bundles of changes, with

7 A README is a very useful file.
Inside you can document how to
get setup with the project, such as
the software needed, and the com-
mands needing to run the code.



a descriptive commit message. Committing only affects your local repository, so
you should also push your changes to the origin.

Once you have finished developing your feature, and it is ready to be in main,
use either the GitHub website, or your local GUI to create a pull request. This
should be done on GitHub. This request will give you a page which shows the all
of the changes you have made since the branch was created. One should always
update from main before opening a pull request, so that you can locally solve
any merge conflicts. Once the pull request is created, notify other members of
your team to give it a review. During this review you should check over code
quality, such as good variable names etc. A good reviewer will check-out (switch
to) your branch, that you are trying to merge in, locally, and run the code to make
sure it works. At this point you should also run any automated tests. If you are
using GitHub, it is possible to setup an automatic system for GitHub to run the
automated tests before merging in your code. Once everyone involved is satisfied
with the code changes, someone (likely you) will approve and accept the merge
into main. If there were any comments during the review, you can update changes
and simply push them to the origin to update the pull request. If the review takes
a long time, and the main branch has changed, one should also do another update
from main before merging in.

Once development has finished, switch back to the main branch locally, and
synchronise with the origin, pulling the new changes. The main branch should
now have all of your changes! From this point, you repeat the process, with a new
branch for each new piece of work/feature continually.

When working alone, it is tempting to just commit everything directly to main,
however, I urge you to use branches instead, as it offers much more flexibility
and gives you vital practice for when you eventually work with others. However,
committing to main is better than not using any version control at all.

11.4.2  Advanced Topics
11.4.3 Solving Merge Conflicts

When you are solving merge conflicts, it is best to open them in Visual Studio
Code. This will give you a side by side comparison between the incoming changes
and your local changes. One can use the GUI to select which version you want to
keep from the two. One can select individual lines, or entire blocks and use the
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context menu (right click) to “‘stage” or choose those changes. The window at
the bottom shows the final merged version. It is also possible to manually edit
the conflicted file until there are no more conflicts. Git will add some text to the
files to show a contflict, the GUI will remove this detail for you, but know that it
can happen.

Merge conflicts using a GUI are much easier to deal with. All of the conflicts
must be solved before finalising the merge. It is a good idea to run the software
and test whether it works before continuing.



12 Reproducibility

When we are developing scientific applications, reproducibility is a core value of
our code. It should be possible to run the same code and expect the same results.
We should be able to send our code to others to verify our results. This chapter
investigates techniques for improving reproducibility across our code base.

12.1  Controlling for Randomness

A large area of research requires the use of Monte-Carlo simulations, which are
stochastic in nature. These techniques have randomness at their core. We can look
to the example in Figure 8.1, which used a Monte-Carlo technique for estimating
7t. Each time we ran our code, the estimate for 77 changed, but why? To answer this
question, we first need to take a look at how the random numbers were generated
in the first place.

12.1.1  Random Number Generators

There are numerous algorithms for generating random numbers. In some fields,
such as computer graphics, this process is referred to as noise. These algorithms
are commonly referred to as Random Number Generators (RNGs). The set
of algorithms forms a core part of many fields from academic simulations to
computer graphics to cryptography. These algorithms and their properties have a
long history, but are still open areas of research. Let’s take a look at how some of
these algorithms work.

As a starting point, we should mention that many of the algorithms used today
are known as pseudorandom number generators (PRNGs). One would normally
expect a random number generator to be just that - random. However, usually
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most such generators are in fact pseudorandom, which means they act like a truly
random number generator, but are in fact entirely deterministic and predictable.
PRNGs are often used in place of truly random generators, due to the fact that
the latter is incredibly hard to reliably reproduce at the scale and speed required
in modern applications. The bright side to this, is that most applications that use
random numbers will suffice with only pseudo-random numbers.

A PRNG works by evolving an internal state (a collection of bits - usually a
number) via the repeated application of a function. One very simple example of
a PRNG function is the following:

Xyt+1 = (aXn 4+ b) mod m, (12.1)

where a, b and m are large integers. X, represents the internal state. One can
use this internal state to generate numbers of a distribution, for example, the
nh floating point number between 0 and 1 generated could be Y, = % We can
code up this random number generator in Julia and look at the properties. In

mutable struct SimplePRNG{T<:Integer}

3 T o X
— ==

end

function Base.rand(rng::SimplePRNG)
rng.X (rng.a rng.X rng.b) rng.m
return rng.X rng.m

end

Algorithm 12.1, we use a struct to keep track of the internal state of the PRNG,
along with the choices of variables that make it up. We can choose some values
for this simple random number generator: 2 = 3697, b = 4397 and m = 65521.
We can initialise our PRNG with the state of Xy = 42:

julia> rng SimplePRNG{UINnt32} (42, 3697, 4397, 65521);

We can now collect some values using the rand function defined earlier:

Algorithm 12.1. A function to gen-
erate pseudorandom numbers us-
ing an internal state, using Equa-
tion (12.1).
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julia> [rand(rng) for _ in 1:5]
5-element Vector{Float64}:
0.4369438805879031
0.4486347888463241
0.669922620228629
0.7710352406098808
0.5843927900978312

We can reset the internal state of our PRNG and see the same numbers being
generated:

julia> rng.X = 42;
julia> [rand(rng) for in 1:5]

5-element Vector{Float64}:
0.4369438805879031
0.4486347888463241
0.669922620228629
0.7710352406098808
0.5843927900978312

If the process of an RNG is ultimately deterministic, how can we evaluate what
makes a good PRNG? The quality of a PRNG can be measured via the following
statistical tests:

1. The periodicity of the process. As PRNGs rely on an internal state, chosen
from a finite number of states, eventually all PRNGs will cycle to a previously
visited state and being repeating. This gives some periodicity to the PRNG,
which can make the process predictable and unsuitable for certain use cases.

2. Bias of the process. A PRNG generates numbers from a given distribution. For
example, a method that produces floating-point random numbers been 0 and 1
will not output each possible number with equal probability. Certain numbers
within this distribution will be biased towards.

3. Speed of the process. Certain applications such as computer graphics require
fast generation of random numbers to render effects in real time. This means
that the algorithms that produce them must be optimised to run quickly, while
still produces high enough quality random numbers.
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4. Predictability. If one has access to one, or a sequence of, random number(s)
generated from a PRNG, sometimes it is possible to predict the internal state
of the PRNG and therefore one can know all future predictions. Poor results
of the previous traits can lead to a predictable PRNG, which is unsuitable for
tasks such as cryptography.

We can run these statistical tests on our chosen example PRNG, choosing the
initial internal state to be 42. Let’s write an algorithm to determine the cycle period
of our PRNG:

@inline get state(rng::SimplePRNG) rng.X
function measure cycle(rng)
visited states Set(get state(rng));

n 0;

while true
n 1
rand(rng)

next state = get state(rng)

if next state in visited states
break
end

push!(visited states, next state)
end

return n
end

The cycle length of our PRNG is:

julia> rng.X = 42;
julia> measure cycle(rng)
65520

As our PRNG is only capable of generating m — 1 different numbers, it is good
that our generator produces all of them before cycling.
For the next statistical test, we can generate a histogram of the values produced
between 0 and 1 for 10* samples to visually inspect the output for any bias.
Looking at Figure 12.1, one can see that this random number generator is very
poor at generating a uniform random number between 0 and 1, and would be

Algorithm 12.2. An algorithm to
test the period of a random number
generator which has already been
seeded. One can test other ran-
dom number generators by defin-
ing get_state for the specific type.
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unsuitable in many scientific applications which require the random number
generation to be uniformly randomly.

We can apply the same test of the histogram using a standard default random
number generator - the Xoshiro algorithm, which can be generated with the
following code:

julia> using Random;
julia> mersenne_rng Random.Xoshiro(42);

Many pseudo-random number generators use the Mersenne Twister RNG, but in
Julia, the Xoshiro implementation is much faster, and is now the default.

The number supplied as an argument is called the seed of the PRNG. This
is used to generate the initial state of the PRNG. In our previous example, our
seed directly was the initial internal state, however, usually a function is used to
convert the initial seed into a more suitable state.

12.2  Managing Software Versions

Another common problem when other people run your code, is that it does not
work the same way on their machine as it does on yours. One of the key causes
of this problem is software versions, particularly the versions of packages used

Figure 12.1. A simple distribution
of 10* random numbers generated
using the PRNG in Algorithm 12.1.
The parameters of the PRNG were:
Xo = 42,a = 3697, b = 4397 and
m = 65521. This was generated
starting with a seed of 42. One can
see that this is a poor random num-
ber generator for numbers between
Oand 1.
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within your code. Julia makes this process relatively simple and should be a
practice on every single project you use.

A new project, or even an existing project, should be self-contained within
a single folder, preferably in a source controlled repository. Within this folder,
one should create an environment for developing and running the code within.
Environments have existed in various forms across multiple programming lan-
guages for many years. They serve as a record of required packages, along with
their versions, that are used within the project. In Python, one can use Ana-
conda to manage these environments, and also to install the packages. Julia has a
built-in package manager, which also provides a mechanism for specifying an
environment that can be checked into source control.

The environment in Julia is just a simple Project.toml file. One should never
need to manually edit this file, but instead, interact with it through the package
manager. Open up the Julia REPL, inside your current repository, and run the
following command to create that project file:

using Pkg;
Pkg.activate(".");

Of course, one can replace the "." with a fully specified path as well. One
can also go into the package manager mode in the REPL by pressing the ] key.
You may need to add a package to see the Project.toml file appear. To do this, you
must know the name of a package. After activation, type the following to add
BenchmarkTools.jl to the current environment:

Pkg.add("BenchmarkTools")

This will ensure the creation of the environment file, which should be checked
into source control. If you are using code from another person, when opening up
the folder in the REPL, you should activate the environment of the current folder,
and then run the instantiate command, which will download and install all the
required dependencies in the project:

Pkg.instantiate();

Julia will usually download these packages into the current user’s home direc-
tory. If the same package is used by multiple environments in different projects,
then Julia will only install the package one and reuse it between each environment.
This approach makes the environment system very lightweight and portable.
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Alongside the environment file (Project.toml), one will also see a Manifest.toml,
which should not be checked into source control as it contains all the specifics
of packages currently installed on a system. This can vary from user to user and
may conflict between different operating systems and users. Additionally, most of
the information in Manifest.toml is superfluous when one already has Project.toml.
When a user instantiates an environment, it will create the Manifest.toml file.
The main different is that the manifest contains all of the specific details of the
packages currently installed, down to the minor version. While the environment
file may specify a package to use, most of the time, any version of the package,
beyond a version number will suffice. One can introduce restrictions on a package
version by using an equality operator:

Pkg.add("BenchmarkTools>1.0")

This will allow any versions of the specified package above a major version of
1. When instantiating, Julia will fetch the latest package which fits the restrictions
in the environment.

All development for the package should be done whilst the current envi-
ronment is activated, so that any packages used will have to be added to the
environment file. All of these changes will then be uploaded to source control.
When another person is using your code, they can quickly activate and instantiate
the environment and run any code they need straight away, with no further setup.
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13 Documentation

Documentation is often overlooked in scientific software projects, especially re-
search oriented projects. However, the lifetime of a software project can often
be underestimated, with the same piece of code being passed down through
multiple generations of PhD students. It is common for developers to forget what
even their own code explicitly does, when it is written multiple months ago.
This section will cover some best practices that will help make the code easy to
understand and use and last longer. Documentation is a process that happens
while writing the code in the first place, it is not strictly a process that happens
once the code is completed.

It is important to cover what is meant when we talk about documentation.
Asking many people, especially scientists that code, they would say that com-
menting one’s code is the way to document it. This means that people that come
after can read the comments to understand the function of the code. The main
point one should take away from this chapter is that this view of documentation
is completely false. This method is a bandage applied to poor programming
practices in order to salvage some future readability and usability of the code.

13.1  Commenting is not Documentation

This will be probably the most surprising section of this chapter. This is not the
narrative that is taught in many programming classes, especially in the sciences.
However, this is a practice that has been followed by the mainstream software
engineering industry for many decades. In his book, Clean Code", Robert Martin
dedicates an entire chapter to comments and what makes a good or bad comment.
The one quote from that chapter to take away is summarised in just one short

sentence:

*R.C. Martin, Clean Code: A Hand-
book of Agile Software Craftsmanship.
Prentice Hall, 2008.
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The proper use of comments is to compensate for our failure to express ourselves in
code. - Robert C. Martin

Note the use of the word failure. Each comment used is a capitulation to making
the code itself understandable. This is the first principle to understand about
documentation:

1. Code should be self-documenting wherever possible.

Let’s look at an example to see this concretely:

d(a, b)

Calculates the distance between a and b,
where a and b are vectors.

function d(a, b)
# Check the make sure the vectors are the same length
@assert length(a)==length(b)

# Calculate the vector difference of a and b
dlta b .- a

# Calculate sum of the squares of the difference
12 sum(dlta.*dlta)

# Calculate sqrt of the square sum to find dist
1 sqrt(12)

return 1
end

The above function is readable, but there are many comments. The first is
known as a docstring, which is recognised by the Julia runtime, so that one can
access the documentation for a function without having to visit the source code
directly. This will be covered in more detail later. The docstring describes the
purpose of the function and how it is meant to be called. Notice that here, this
docstring stands in for the failure of the name and signature of the function
itself to describe its purpose. The method signature is d(a, b), which is utterly
non-descriptive. Instead, we could avoid the docstring completely by using a
comphrensible function name, such as distance(a, b), which can be read as
calculating the distance between variables a and b. There is still a lot to be desired
here, as the distance is a metric which is somewhat ambiguous. Does one mean
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the Euclidean distance, or the Manhattan distance? This disambiguation is what
should be included in the docstring.

Next, moving on to the body of the function, we notice that there are checks to
make sure that a and b are the same length. Notice that we are also expressing
the need for a and b to be containers with the length function defined. Later on,
we also impose the need for broadcasting to be defined on these objects, with the

function defined on the elements. We can continue with this analysis, but in
Julia, these conditions are all met by any type derived from AbstractVector. We
can document this need by explicitly defining the arguments of this function for
only types derived from AbstractVector.

Finally, notice that the comments exactly describes what the following line of
code does. Why doesn’t the code itself tell you what is happening? The name dlta
is non-descriptive, a better name may be a_to_b, which describes the vector going
from a to b. However, I believe that it is actually better to combine the methods
together, as Pythagoras’ theorem is well known. The resulting changes to the
function become:

distance(a, b)

Calculates the Euclidean distance between a and b.

distance(a<:AbstractVector, b<:AbstractVector) sqrt(sum((a.-b).”2))

For more complex functions, it is usually better to break the function down
into multiple lines. But this function is a simple one, which has a well known
formula in the real world. The name of the function describes what the function
does. The description in the docstring points to a “’Euclidean distance”, which
can be looked up online to find out more, which will make the formula used
obvious. Finally, the type signature makes it clear that any vector like type can be
used, making it clear what sort of arguments can be used. Importantly, all of our
changes allowed us to write a single line function definition. Short functions are
easier to understand. This does not mean that one should write a huge statement
on a single line, but the function easily fits into the reader’s field of view. One
should notice that we also removed the check to make sure that the vectors are
the same length, since the function will already error on the broadcast. This is
acceptable here, as the function is short enough to see the source of the error.
However, on longer functions it is often better to error as early as possible.
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However, one may take a look at this example, and argue what'’s the real harm
in commenting a function in this way? For this example, the use is innocent
enough, however, let’s take a look at the following example:

fit(x, vy)

Fits a linear function y=mx+c using least squares method.
Returns (m, c).
function linear fit(x, vy)

n length(x)

@assert n==length(y)

sum_Xxx sum(x.*x)

sum_xy = sum(x.*y)

sum_x sum(x)

sum_y = sum(y)

denominator = n sum_ XX - sum_X*sum X

m (nfsum_xy - sum_x * sum_y) denominator

C (sum_y*sum xx - sum X * sum Xxy) denominator

return (m, c)
end

Other that a few, perhaps poor, variable names, this function is perfectly okay.
Despite the use of single letter variable names, this is only acceptable due to
the mathematical context of this function. Commonly functions are expressed
as x being an input to y. Additionally, n is commonly used as the length of a
vector, or number of points in a list. This variable could be replaced with a more
descriptive name such as num_points, but this would decrease the readability of
the equations below.

However, let us imagine that we are creating a package where one can have
a model which maps from x to y, which we represent with a struct. Let’s take a
look at the type definition:
abstract type AbstractModel end
struct LinearModel{T}

slope::T
intercept::T

end
predict(model: :LinearModel, x) model.slope * x + model.intercept

Now in our fit function, we can modify the code to return one of these models:



13.1. COMMENTING IS NOT DOCUMENTATION 233

fit(x, y)

Fits a linear function y=mx+c using least squares method.
Returns (m, c).

function linear fit(x, y)
n = length(x)
@assert n==length(y)
sum_XXx = sum(x.*x)
sum_xy = sum(x.*y)
sum_Xx = sum(x)
sum_ y = sum(y)
denominator = n * sum_XxXx - sum_X*sum_ X
m = (n*sum_xy - sum_x * sum_y) / denominator
c = (sum_y*sum xx - sum _x * sum_xy) / denominator

return LinearModel(m, c)
end

This modification was easy enough, however, we have just introduced an error
without thinking! Now the docstring for this function lies. This function does not
return a tuple of (m, c), but instead returns a LinearModel struct. Not only this,
but we have introduced breaking changes across our code base, and any other
code base that uses this code. When refactoring and improving code, comments
(in this case the docstring) often gets left behind, reflecting the state of how the
code used to be. The fewer the comments one has, the fewer of these insidious
errors one will encounter.

Fortunately, Julia specifically has a mechanism for making docstrings robust,
since they provide a description of the developer facing API of our functions. We
can introduce a test for this docstring, on the original function:

fit(x, y)

Fits a linear function y=mx+c using least squares method.
Returns (m, c).

# Examples

"“jldoctest
julia> x = [1, 5, 9];
julia> y =3 . * x .- 7;
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julia> linear fit(x, y)
(3.0, -7.0)

function linear fit(x, vy)
n Llength(x)
@assert n==length(y)
sum_Xxx sum(x.*x)
sum_xy sum(x.*y)
sum_x = sum(x)
sum_y sum(y)
denominator = n sum_Xx - sum_Xx*sum X
m (n*fsum_xy - sum_x * sum_y) denominator
C (sum_y*sum xx - sum X * sum Xxy) denominator

return (m, c)
end

This will now add a unit-test> to this function to ensure that the documentation
stays up to date with the function. This is a special type of unit testing which
makes sure that examples are up-to-date with the current code. The functionality
for running these tests is in Documenter.jl, which is documented in the base Julia
docs3.

Let us summarise the points seen in this section.

e Function names should be descriptive as to what the function actually does.

If the function does many things, it is often better to split the function into
multiple, shorter, functions.

e Argument names should be descriptive as to their purpose, or their purpose
can be easily inferred from the function name and the type descriptions.

o Comments describing what the code does usually indicate that the code is
written poorly. This is a failure of the code to express what is happening. This
can usually be fixed by better variable names, or splitting complex sections
into smaller functions.

e Comments can be used as a last resort to disambiguate a function, in order to
keep function/variable names short and concise.

> We cover unit-testing in more de-
tail in Chapter 14.

3 JuliaLang, Julia Docs - Documenta-
tion, https://docs. julialang.o
rg/en/vl/manual/documentation
/, Accessed on 22nd July 2022.
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13.2. BETTER VARIABLE AND FUNCTION NAMES

e Using many superfluous comments vertically expand a function, increasing
the chance that it will expand beyond the typical field of view of the reader,
making the function harder to understand in its entirety.

o Type restrictions can stand in for comments, as this documents what type of
objects should be used on these methods. However, this is the weakest form of
documentation in Julia, since this can restrict the reusability of one’s code and
one should avoid typing most variables.

e Code changes over time, and not only the code, but the documentation, must be
updated to reflect these changes. However, this is an additional responsibility
for the developer. Using automated techniques for testing documentation is
recommended when possible. Otherwise, reducing comments in favour of
readable and understand code will reduce the maintenance burden of com-
ments.

e Comments can be used to reflect the why of design choices, as long as they are
short and concise. This avoids other programmers repeating the same mistakes
as the original designers. However, it must be recognised that this often reflects
a failure in the code design, and is only a bandage. It is often better to spend
time fixing the problem that caused the requirement of the comment in the
first place.

13.2  Better Variable and Function Names

We have already touched on this topic throughout the book, but it is a topic
that needs special mention among a scientific audience. We, as scientists, are
often fluent in the language of maths, feeling perfectly comfortable with symbols
representing concepts. It is common to project this onto programming, using a
single letter to represent a variable or a function, but this is a habit worth shaking.
In this section, we’ll look at the reasons for avoiding poor variable names, and
when short, non-descriptive, variable names can be acceptable.

Linking back to the previous section, poor naming can introduce the need for
comments to explain the code. As we have already seen, commenting code is
usually superfluous, and a more descriptive name for a variable or function is
usually not much more effort.
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As scientists, the type of code we write, usually involves translating equations
into code. Used within a method, shorter variable names and lead to cleaner
equations that are easier to see. Let’s take a look at a function which calculates
the force between two objects:

struct NBody{Q, T}
r::Q
m::T
end
raw

force(a, b)

Calculates the force felt by body a, due to body b.
Uses Newton's Law of Gravitation:

““math
\overline{F} {ab} = \frac{G m_a m b}
{|\overline{r b}-\overline{r a}|"3}
(\overline{r_b}-\overline{r_a})

Result is a vector, measured in SI units (Newtons).

function force(a::NBody, b::NBody)
G 6.674e-11 # m™3-/ kg / (s~2) (SI Units)
Ar b.r-a.r
r2 sum(Ar.”2)
F=1(G*a.m* b.m) (rz)~(3/2) * Ar
return F

end

This function is not actually that bad, despite the single letter variable names.
This even makes use of Julia’s support for unicode characters. This is all down
to context. The function is small enough that the entire context, including the
docstring, is accessible to the reader. Additionally, the equation used is directly
put in [&TgXformat in the docstring itself, which is accessible to anyone using the
function. Anyone familiar with some basic physics will be able to recognise the
symbols for what they are, because of the familiar notation.

But one can still think, is this notation standard across all educational back-
grounds? The answer to this thought is usually no for most topics. Notation is
never consistent across a large array of people. For this reason, there are choices
we can make to make our code more understandable. First of all, when using
structs to represent data, we should aim to provide descriptive variable names
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to each of the fields, since these are the most commonly used, and usually used
far from the context of the definition. A better choice for the struct would be as
follows:
struct NBody{Q, T}

position::Q

mass::T
end

This now improves the readability, wherever this code is used. The only re-
maining issue is with the notation. The function uses Unicode symbols to better
represent the underlying mathematical symbols. However, one should not expect
that everyone using or reading your code will have access to a Unicode supporting
editor. This might make the code illegible on those systems. A common example
for this is on terminal based editors, such as Vi, which one may use while editing
code on a HPC. These symbols will not show up properly there, which should be
kept in mind.

The variables within a function having proper names is not as important as
the naming of the function itself, including the arguments. The line that defines a
function and its arguments is called the method signature. In Julia, one can search
the help via the name of a function, so it is important that the function have the
most useful and obvious name for the functionality being encapsulated. Not only
this, but this method name will be used in other functions as well, which reduces
the need for commenting the code as this code becomes more readable too. Just as
important, is the naming of the arguments. One should know what one can pass
into a function. In Julia, it is often discouraged to specifically type the variables,
and so one cannot always rely on a type definition to inform one’s understanding.
One can always use docstrings to help, but if a better variable name will suffice,
then the docstring is entirely superfluous.

13.3 Automatic Documentation

As seen in previous parts of this chapter, we have covered the use of docstrings
to document the proper use of our functions. We were even able to inject testing
into the docstrings to make sure that the functions do what they were meant to
do. This section will cover the basics of writing a good docstring, but before we
dive into the details we must first ask the question - what is the purpose of a
docstring?
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Docstrings are designed as a way for a program to crawl through your pro-
gram and create a complete set of documentation from your source code. Many
packages you will see online, including the Julia documentation itself, is usually
automatically generated using the information contained within docstrings. As
this is usually the purpose, we can say that a docstring provides a means by which
one can document the public API# of a project. Note the use of the word public.
These are the functions that you intend to be used externally, outside the library.
Additionally, one can use it to document functionality inside the library for use by
other developers. As we are focused on Julia, which has no mechanism for hiding
code, the public API of a library is usually defined as those functions which are
exported from the library. Many code bases will have numerous internal functions
that are not meant to be accessed by outside parties. Many of these functions will
not need docstrings, and they can often be superfluous and have all the negative
downsides discussed in the earlier section on comments.

Having a public facing API, which is well-documented, is a huge boost to
usability of your code. If you are writing a library which is used by others, it is
the first port of call when learning to use your code. If your documentation is
well written, one need not dive into the source code itself. A public facing API is
a very good thing to have as it creates an implicit contract between the library
and the users. It defines how the code should be used, and what should not be
used. This gives the library developers the freedom to improve and modify the
underlying code, without changing the APL This can be as simple as bug fix or
performance improvement or a drastic architecture design change, as long as the
public API continues to stay the same, the downstream consumers will still be able
to use your library. Changing this public facing API will usually involve breaking
changes downstream, which can seldom be avoided, but good documentation,
including being able to show changes from one version to another can ensure
that any breaking changes are known about and consumers can resolve these
breaks in their own code.

Maintaining documentation has famously been a difficult task. In the past,
many libraries had very poor documentation, and it was rare to find a project
which was well-documented that didn’t have a lot of funding behind it. Developers
became developers because they enjoy writing code, not necessarily because they
enjoy writing documentation. But when there is a boring, monotonous task, you
can count on a programmer to try and automate the process. In almost every
modern language, there are tools for scraping the source code and automatically

4 Application Programming Inter-
face. In this context, it means the
set of modules, structs and func-
tions exposed to a consumer of the
code.
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producing beautiful and useable documentation. In Julia, this is provided by
Documenter.jl5. While this book will not provide a full tutorial for using this
package, just know that one can generate most of the necessary documentation
directly from docstrings, which will be discussed here. Details on setting up
Documenter.jl in your own project will not be covered here.

We have already seen the basics of documenting a function here, it starts with

using the string notation that is copied from Python:

double(x)

Returns twice the input.

double(x) 2X

This allows us to write a string across multiple lines. It is entirely possible to write
a docstring using a single ", but this is discouraged, as a docstring has a format.

The first rule of a docstring is that the first line should be the method signature
(or a simplified version of it), indented by exactly 4 spaces to indicate that it
should be formatted as code. One can also write optional arguments with square
brackets as in the following example:

ntimes(x[, n=2])

Returns n times the input.

ntimes(x, n=2) n*x

One can also separate out the arguments onto multiple lines under a heading:

# Arguments
- X" : The number to be multiplied.
- "n::Integer’: The number to multiply by.

In this case each argument has its own line and begins with a -, with the name of
the argument surrounded by backticks®.

If one has some related functions which may be of interest, one can include a
“See Also”’ section, as follows:

5 JuliaDocs, Documenter.jl, https :
//juliadocs . github.io/Docum
enter. jl/stable/, Accessed on
22nd July 2022.

¢ The backticks usually represent a
block of code within the docstring.


https://juliadocs.github.io/Documenter.jl/stable/
https://juliadocs.github.io/Documenter.jl/stable/
https://juliadocs.github.io/Documenter.jl/stable/
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See also [“double!"](@ref), [ triple ]1(@ref), [ quadruple’](@ref).

Which will reference the functions double!, triple and quadruple, using a spe-
cial notation for a link.

One of the most important sections for creating high quality documentation is
the use of an examples section. We have already seen this before in a previous
section, as we were able to use this to write a doctest. Go back to the previous
section to see an example.

Finally, one can also format LaTeX formulae within a function definition, which
will certainly be useful for documenting scientific packages. Revisit the previous
example to see this in action. Copy the example into your REPL and search for
the help on the function and see what is displayed.

This section is not a comprehensive overview of how one can use Documenter.jl,
but be sure to consider it when sharing your code with others, and read their
documentation for further guidance.

13.4 Summary

If there is anything to take away from this section, it is that no choices are perfect.
It can be quite difficult to think of a good name for a variable, or hard to choose a
variable name that does not impede the readability of a formula. For this reason,
it will always come down to a judgement decision based on who will be using
your code, and what is its purpose. Becoming better at writing readable code,
that is well-documented, is a skill which takes practice. It often does not take too
much more time, and can even save you time in the long term when you come
back to try and use the code in the future.

One should remember that there are many tools out there which make the job
of documenting your code much easier. IDEs will use the comments you write to
give you reminders and context when you are using these functions, making for
a more pleasant and error-free development experience. It is not always a tedious
and difficult task.

As a test of your understanding, go back to a piece of code you have written
and see how it can be refactored for readability. See how long it takes you to



13.4. SUMMARY 241

make the code easier to use and better for a user that has never seen the code. The
resulting code is likely something you will be proud of and want to show others.






14 Unit Testing

How often do you find yourself running some code that worked yesterday, but is
now broken? This happens very frequently when you are quickly iterating on your
code, especially in a dynamic language like Julia or Python, where a misspelled
variable during compilation and instead crashes your program as it runs. If this
error is behind checks that happen infrequently, these bugs may go unnoticed
for a long time. Unit Testing is a practice that has been thoroughly developed in
the software engineering industry which, when implemented correctly, can help
avoid these bugs, and ensure that any new functionality does not break existing
functionality.

A unit test, put simply, is just a way of checking that a piece of code functions
as expected. To come up with an example, let us implement a two-dimensional
vector, and provide some functionality:

using Base

import Base y e X/,
struct Vector2D{T}

X::T

y::T
end
(+)(a::Vector2D, b::Vector2D) Vector2D(a.x+b.x, a.y+b.y)
(-)(a::Vector2D, b::Vector2D) Vector2D(a.x-b.x, a.y-b.y)
(*)(a::Real, b::Vector2D) Vector2D(a*b.x, a*b.y)
(/)(a::Vector2D, b::Real) Vector2D(a.x b, a.y b)
(==)(a::Vector2D, b::Vector2D) (a.x==b.x a.y==b.y)

This was relatively easy to do, but how do we ensure that it works the way we
expect? We can manually test this of course:

Algorithm 14.1. A simple imple-
mentation of a 2D vector type in
Julia.
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julia> a = Vector2D(2, 2);
julia> c = 1.5;

julia> c*a == Vector2D(3, 3)
true

However, this code is just what we wrote in the REPL. This code is not re-
produceable anywhere else, and usually does not cover all of our code. What if
we suddenly change the implementation? Then these checks are not up-to-date.
Instead, we put this code into a different file which runs these checks for us.
In-built to Julia is the Test.jl package, which provides some macros for writing
these tests. Let’s take a look at what one of these files looks like:

using Test;
# Make sure you have access to the right files
include("vector2d.jl")

a = Vector2D(2,5)

b = Vector2D(10, 20)

@testset "Test vector addition" begin
@test a + b == Vector2D(12,25)
@test b + a == Vector2D(12,25)

end

@testset "Test vector subtraction" begin
@test a - b == Vector2D(-8,-15)
@test b - a == Vector2D(8,15)

end

@testset "Test scalar multiplication" begin
@test 5 * a == Vector2D(10,25)
@test a * 5 == Vector2D(10,25)

end

@testset "Test scalar division" begin
@test a / 5 == Vector2D(0.4,1)

end

Notice that we have covered all the different methods that we wrote. Each
invocation of the @testset macro, allowed us to write a block of code that calls
the functions we wrote. These tests are broken up into different units to allow us
to identify the precise part of the program that broke, if the tests should fail. These
tests, along with the others for our code, can all be run together after making any
changes, to ensure that the programs runs as expected. There are a few ways to
run these tests, but the simplest is to just include the file, which I have saved in
code /vector2dtest.jl:
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julia> include("code/vector2dtest.jl")

Test Summary: | Pass Total
Test vector addition | 2 2
Test Summary: | Pass Total
Test vector subtraction | 2 2

Test scalar multiplication: Error During Test at code\vector2dtest.jl:16

Test threw exception

Expression: a * 5 == Vector2D(10, 25)

MethodError: no method matching *(::Vector2D{Int64}, ::Int64)

Closest candidates are:
*(::Any, ::Any, ::Any, ::Any...) at julia\base\operators.jl:655
*(::T, ::T) where T<:Union{Int128, Intl6, Int32, Int64, Int8, UIntl28, UIntl6, UInt32, UInt64, U.
*(::StridedArray{P}, ::Real) where P<:Dates.Period at julia\stdlib\v1l.7\Dates\src\deprecated.jl::

Stacktrace:

Test Summary: | Pass Error Total
Test scalar multiplication | 1 1 2

ERROR: LoadError: Some tests did not pass: 1 passed, 0 failed, 1 errored, O broken.
in expression starting at D:\Development\Julia\fictional-computing-machine\code\vector2dtest.jl:15

Notice that the macros show which of the tests have passed, with a name
labelling the purpose of each unit test. Notice that this test failed the scalar
multiplication test. This gives us the line at which this failed, and the reason why.
We did not define a method for multiplying a vector by a number, only a number
multiplying a vector. We cannot assume associativity, we have to implicitly define
this. In our example we simply add the line:

(*)(a::Vector2D, b::Real) = b*a

This will fix that specific unit test. However, we notice that this exception
stopped all unit tests from running. The final division unit test also fails with the
erTor:

Test threw exception
Expression: a / 5 == Vector2D(0.4, 1)
MethodError: no method matching Vector2D(::Float64, ::Int64)

Closest candidates are:
Vector2D(::T, ::T) where T<:Real

This is because we specified the types had to match. Again, this is easy to fix by
adding a variant of the constructor:

Vector2D(x, y) = Vector2D(promote(x, y)...)
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A final run will tell you that all tests pass. There are a lot more ways in which to
test this data structure, which we will not go into now. Most importantly, we have
some code which automates the verification process of our code. The rest of this
chapter will give you an overview of why this helpful and provide a framework
for high quality unit tests.

14.1  Why test your code?

As with most things, the answer to this section has a lot of nuances. Here, I will
try to focus on the potential reasons for an academic to care about unit testing, as
this is an area that is almost completely neglected in research.

14.1.1  Ensuring correctness

The biggest reason for testing your code is to make sure that it works. This means
that the algorithms are correct, and produce the results that you expect. When
programs become more complex, knowing if the program is producing the correct
answers can be quite difficult, and testing these cases usually feels circular as you
need the result to tell you if it is correct. However, one should be able to break
down a complex algorithm into smaller chunks, sometimes just a single function
with a few lines of code, and thoroughly test the individual chunks. This can
give the developer some assurance that if the smaller chunks are correct, then
assembling them into a more complex structure is less likely to have errors. One
can also write simpler tests to make sure the complex aggregate functions also
function correctly with a few examples, knowing that the lower level routines are
also robust through their own tests.

In research, having small bugs in your software which affect your final output
can completely invalidate an experiment. Researchers should always be certain
that their code is doing exactly what it is meant to be doing. What better way of
doing this, than checking to see if the functions themselves give the answers you
expect. There are many occasions when you write a general algorithm to calculate
numerical answers to problems, which only have analytic solutions in specific
cases. These specific cases can be used to verify that the algorithm is producing
the correct results, as there is a known answer calculated by different means. If
your algorithm does not match the known case, this can be the point at which
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you discover the error so that you do not waste a lot of time experimenting and
producing results with a flawed algorithm.

Ensuring correctness of your code is the central tenant of unit testing, all
subsequent discussions of why to unit test, are just finer points which all lead
back to the question of correctness.

14.1.2  Optimisation

This book, after all, is designed around the idea of writing high performance code.
Often times, when people are optimising, they make many assumptions about
what they can and cannot do, which may introduce bugs into the program. Often
times, the safest way to optimise a function is to make sure that this function
has unit tests that cover a wide variety of use cases for that function. Once these
unit tests are written and known to pass with an algorithm, one can spend time
focusing on optimising it, knowing that if one introduces a bug at any point, it is
highly likely that this will be caught by the unit test. If this practice is accompanied
by the use of regular commits with source control, a bug can be traced down to a
specific commit by using the unit tests, and seeing which change introduced the
new bug.

Instead of rewriting the same function for a more optimised version, one can
start writing a parallel ““fast” implementation of an algorithm alongside the
original “slow”” version. The unit tests become very simple, for the same inputs,
both algorithms should produce the same answer. This makes it very easy to
ensure that any new algorithm is at least as correct as an existing algorithm. Once
the fast version is verified to be correct, it can take the place of the slower one,
and the slower one can be kept in the unit tests to ensure that the faster one will
always be correct, even if future modifications are made.

14.1.3 Reproducibility

A large part of science is making sure that results can be repeated and reproduced
by independent teams of researchers. Numerical research, unlike experimental
research, has an incredibly high advantage when it comes to fulfilling this ex-
pectation of good scientific practice. A well written computer program, can be
sent to another team which can run the code with the same inputs and achieve
the same outputs. Open-science is only just becoming popular, following in the
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footsteps of the open-source movement, but it has such potential to accelerate
scientific discovery and cut down on research based on incorrect and spurious
results as new results can be easily verified by other researchers.

Making your code easily unit tested forces the code to be written in a way that
it can be run by anyone. Unit tests should be simple and self-contained, making
sure that results gained were not just one-time flukes, but can be reproduced at
will. Unit testing defines a quick and simple procedure to run code on different
machines to ensure that each machine is capable of reaching the same result.

One caveat that needs more discussion is how to ensure reproducibility when
the underlying methods are inherently stochastic? This question is answered later
in the chapter.

14.1.4 Documentation

One often over-looked use of unit testing is the ability to document the use of your
code. This is not a replacement for well documented software, but can provide a
base of examples for how different functions and parts of your code are expected
to interact. Someone else using your code may not be entirely sure of the purpose
of a function, but can see how it is used in the context of a unit test and better
understand why it is there. Often, unit tests provide a perfect minimum working
example (MWE) for a certain problem, which can be easily understood by readers
of the code.

14.2  Writing Good Unit Tests

This section could be a chapter in its own right, and many people have written
extensively on the topic. This section does not aim to be a complete overview
to the topic, but only an introduction. Here, we will discuss some key points in
which to consider when writing a unit test.

14.2.1 Identifying Purpose

Before writing a test for a function, make sure you know what you are testing for.
A unit test should be small and specific. A good rule of thumb is to make the title
of the unit test as specific as it needs to be to capture the entirety of the test. In
this case, we should use an example:
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@testset "Ensures that the database has created the customer, product, supplier, inventory and staff
db = create db(in_memory=true);
@test has_table(db, "customer")
@test has_table(db, "product")
@test has_table(db, "supplier")
@test has_table(db, "inventory")
@test has table(db, "staff")
end

This example is not actually that bad, as it is testing database creation and table
population. However, when one writes out what is actually happening in this test,
it becomes clear that a lot is going on. Instead, a better design would be splitting
up this set of tests into smaller parts:

@testset "Database creation" begin
db = create db(in_memory=true);
@testset "Customer table creation" begin
@test has_table(db, "customer")
end
@testset "Product table creation" begin
@test has_table(db, "product")
end
@testset "Supplier table creation" begin
@test has_table(db, "supplier")
end
@testset "Inventory table creation" begin
@test has_table(db, "inventory")
end
@testset "Staff table creation" begin
@test has_table(db, "staff")
end
end

These two examples are practically the same, expect the second example names
specifically what is being conduced inside. In most cases, it is best practice to
make sure that the number of @test macros is limited to as few as possible. It
can be tempting to write all of these tests together, as having to run a function
multiple times might result in slow testing, however, Julia’s unit testing design
makes it easy for us to do this while still being efficient; in this case, the database
is only created once for all of these tests.

A single unit test should have a specific purpose and test only that one thing if
possible. If a function performs multiple functions, such as the create_db method,
one can still test individual items on their own, leaving the others unaffected.
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14.2.2  Black Box vs White Box Testing

A “black box” usually refers to an item that performs a task which is completely
opaque to us. We are often ignorant of the inner workings of such an item, and can
only observe what goes in and what comes out. While in our code, we can easily
inspect what goes on inside a function, it is beneficial to take a more withdrawn
approach and simply test if the outputs match our expectations. This is the type
of testing we conduced earlier in the chapter with our 2D vector implementation.
For many research cases, this is clearly the way to go.

A “white box” test, other the other hand, can be used to make sure the internals
of the functions are doing what is expected of them. These tests are less common
than black box tests as they are usually heavily reliant on the current implemen-
tation of the function as opposed to the behaviour. If one knows what functions
will be called within a method, one can use a technique known as ““mocking’ to
force a certain type of temporary behaviour.

One case in research that can come up a lot is the use of random numbers,
which alter what an algorithm does or its results. These functions can often be
very difficult to test, and instead on can mock these functions, to replace their
outputs with known results. Let us take the case of a simulated annealing method,
whose pesudo-code can be written as:

function step!(state, perturbation, loss fn, s)
current_loss = loss_fn(state)
state . perturbation
new loss = loss_fn(state)
if rand() exp(-s (new_loss current _loss))
# Accept the perturbation
return true
else
# Reject the perturbation
state . perturbation
return false
end
end

This method accepts or rejects a perturbation applied to a given state, stochastically,
with a probability defined by the parameter s and the difference of some quality
function comparing the current state, to the new perturbed state. This function
however has some stochastic behaviour that is very hard to control. In this case,
we can mock the rand function so that it always returns a certain value.
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During research for this book, the only library available for this technique in

Julia was Mocking.jI'. This library makes the process of mocking relatively simple:  *https://github.com/invenia/M
ocking.jl
using Random 7
using Mocking
using Test
# ... define generate problem() function
Mocking.activate()
rand patch @patch Random.rand() = 1.0
@testset "Test simulated annealing step is true" begin
apply(rand_patch) do
state, perturbation, loss fn, s = generate problem()
@test step!(state, perturbation, loss fn, s) == true
end
end

However, we need to make a few changes to our original algorithm to get this
to work. Hopefully in the future, there will be packages that make this much
easier in the future.

using Random
using Mocking
function acceptance(s, delta loss)
@mock r = Random.rand()
return r < exp(-s * delta loss)
end
function step!(state, perturbation, loss fn, s)
current _loss = loss fn(state)
state .+= perturbation
new loss = loss fn(state)
if acceptance(s, (new loss-current loss))
# Accept the perturbation
return true
else
# Reject the perturbation
state .-= perturbation
return false
end
end

One can now have control over the value of r in the acceptance function to make
sure that the correct outputs are known. Fortunately, when the Mocking.activate()
call is not invoked, the @nock macro will compile away to nothing so that it has
no impact on the code outside of testing.


https://github.com/invenia/Mocking.jl
https://github.com/invenia/Mocking.jl
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This technique is most useful when facing hard-to-test corner cases which
usually rely on disk access, networking or stochasticity. As these three things are
usually written in underlying, reliable, libraries, one often need not specifically
test these functions and can safely mock them.

14.2.3  Easily Testable Code

Often times, one can only write good unit tests if the code which is being tested is
also well written. This means that functions are broken down into small chunks
that can tested in isolation. Additionally, this workflow also discourages the
programmer to write functions with side effects that can be difficult to test. The
process of writing the tests usually encourages the programmer to refactor the
code that is being tested into something which a much higher quality.

The first step of writing easily testable code is to break down complex functions
into smaller functions®. Ideally, a function should only be a few lines of code at
most. Obviously complex algorithms often take up more screen real estate, but
one should always strive to make a function as small as possible. This makes it
much easier for a different person to understand what a function is doing as there
are fewer lines of code to overwhelm them with unnecessary details.

One caveat in this form of testing, is when one is using stochastics in your
code. However, when refactoring your code into many small functions, try to
isolate where random numbers are being generated. Sometimes, it is best to
write a function which takes in the random numbers as arguments. This way, the
function becomes deterministic to the inputs, and moves the random effects to
another function. One can test the deterministic part of the code thoroughly and
robustly. This is the recommended alternative to using mocking as seen in the
previous section. We can use the same example as an option:

function step!(state, perturbation, loss fn, s; random number=rand())
current_loss = loss_fn(state)

state . perturbation
new loss = loss_fn(state)
if random number < exp(-s (new loss - current loss))

# Accept the perturbation
return true

else
# Reject the perturbation
state . perturbation
return false

*In Julia, this can also provide a
performance boost as type informa-
tion is available on a function call
and so more time is spent in type
safe code.



14.2. WRITING GOOD UNIT TESTS 2§13

end
end

Here, we simply exposed the ability to choose the random number. It is also given
a default choice for the random number so that anyone using the code will not
have to generate the random number themselves.

14.2.4 Isolation

The point about isolation harkens back to the previous section on writing repro-
duceable and robust code. A collection of unit tests, also called a test suite, should
be able to run in isolation from the main code and from each other. Unfortunately,
Julia doesn’t have the most robust system for ensuring that multiple unit tests do
not conflict with one another, and as such, one must rely on an external package to
make sure one isolates the unit tests from one another. The core principle behind
this, is that the outcome of one test should not affect the outcome of another,
especially if they are testing different things.

A package called Safelestsets.jl3 provides the @safetestset macro, which
works similarly to @testset, but moves the code inside a new module scope.
This works well when combined with separate files for testing different parts of
your software, as one can have a single file to call each subsequent file, wrapped
in a @safetestset call, ensuring that the effects from one file do not pass onto
the other files.

The way one uses this package is very simple:

using SafeTestsets

@safetestset "Benchmark Tests" begin
include("benchmark tests.jl")
end

@safetestset "Correctness Tests" begin
include("correctness tests.jl")
end

@safetestset "Reproducibility Tests" begin
include("reproducibility tests.jl")
end

Shttps://github.com/YingboMa
/SafeTestsets.jl


https://github.com/YingboMa/SafeTestsets.jl
https://github.com/YingboMa/SafeTestsets.jl
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This one file will run all of your tests in isolation. This means that one can load
conflicting packages in each section without them interfering with one another,
and any imports from one file will not be available in another. It is strange that
Julia does not have a way to do this by default, as isolation of unit tests are the
norm amongst all other modern languages, but luckily there are packages that
enable this behaviour.

14.3 Bad Unit Testing

For the most part, the more tests one has of a project, the better. Tests are very
useful in providing evidence of the software working as expected. In the majority
of cases, some lower quality unit tests are often better than none. Before we start
talking about what makes a bad unit test, we should not discourage developers
from writing tests, as practice is the only way of improving. Sometimes a bad
unit test, will only be superficially bad, and will only be very benign. However, in
Julia it is easy to write unit tests which have knock-on effects on other parts of
the project. As these are the most serious issues, we will address them first.

14.3.1  Side Effects

A bad unit test is one that causes side effects, or relies on side effects to work. The
most common case in which this happens is using the file system as storage to
test affects. Using the filesystem should be minimised as much as possible when
unit testing as it introduces some abstract notion of ““state”” into the mix, which
can often make your tests less robust.

If a unit test relies on a file existing, this means that the developer has to manage
this file. If testing the code on a new machine, it might not work since the new
machine did not have the file in the place where it was expected to be. In general,
it is possible to write most unit tests without having to save any external state to
disk. Testing should be as pure as possible, so that anyone can come and run a
test, and it will produce the same result, regardless of the state of the disk of a
particular machine.

Other side effects can be more subtle, for example introducing new variables
into the global namespace. In general, using global namespace is often discour-
aged and is given the term ““polluting the global namespace”. This can be as
simple as importing a package, since a using statement will populate the global
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namespace with variables and functions from the loaded module. This is often
why we use SafeTestsets.jl.

14.3.2  Slow Tests

Unit testing can help provide a rapid iteration and development time as the
developers do not need to spend as much time checking changes to their code, as
the unit tests can ensure the code is correct. Many open source packages use unit
testing to provide Continuous Integration/Continuous Development (CI/CD),
which run unit tests every time someone makes a pull request into the main branch.
This quality check is combined with other metrics, such as code coverage*, to
ensure that incoming changes do not break any existing functionality. With this
in mind, it is easy to see that introducing a non-performant test into the mix
can potentially interrupt workflows in the future, causing people to have to wait
longer to merge changes, or simply encourage people not to run the unit tests as
frequently.

Unit tests should be small and compact, and usually, should be very fast to
run. The cases which a unit test covers, should be broad enough to cover a range
of expected results, relying on the edge cases to ensure correctness.

14.3.3 Leaving Out Edge Cases

Often times, runtime bugs only manifest when presented with edge cases. Testing
your code with only the normal expected inputs will mean that these edge cases
will not be touched. One should ensure that your tests are covering the hardest
edge cases so that they are robust to that. A unit test is not helpful if it does not
cover the range of possible use-cases of a function.

4 A number which reflects the pro-
portion of code in the code base
that has been covered by a unit test.






15 Code Organisation

It is the tendency of software projects to keep growing and growing over time.
Eventually, one has to seriously manage the growing complexity of the project, or
else be left with an unintelligible file with many thousands of lines of code which
all interact with one another. These types of project become difficult, even for the
main developer, to understand. However, most pieces of software can be logically
separated out into different files to make the developers job a lot easier to find
what they need, and understand the software as a whole.

15.1  Folder Structure

As a starting point, one should discuss the folder structure. While for initial
projects, having a single source file called main.jl is perfectly reasonable. Once
any advanced level of complexity is reached, this convenient method begins to
hinder and slow down development, as one has to continuously jump all over the
file and context switch between different parts of the program. But before one
separates out the code into different files, it is important to think about the folder
structure.

The most common way to organise the files is to have three main folders,
directly in the root of the repository. These three folders are docs, src and test for
documentation, source code and unit tests respectively. One does not need to
have all three from the start, but it can be useful to make space for them from
the beginning of a project. In the root of the repository, one should also have the
current environment file (Project.toml), which contains the information about all
dependencies and project information.
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A very helpful tool for setting up a repository folder structure is called PkgTem-
plates.jl, which has an interactive way of generating a folder, with the appropriate
folders, along with many extras, such as documentation and unit testing.

15.2  Modules

In Julia, one uses the concept of a module to separate out code into logical chunks.
Instead of every function being available in the global namespace, one can com-
partmentalise them into separate logical chunks, and only use the ones that are
needed at any one time. A module, in Julia, is simply a namespace for a collection
of type and function definitions, along with any global variables. The syntax for
a module is very simple:

module MyModule
foo() println("Hello, World!")
end

This will lock the foo function inside the MyModule module. This removes a
lot of global namespace pollution, and allows names to be reused for different
concepts without any conflicts®. In order to access this function, one must import
it from the module:

import MyModule: foo
foo()

One can imagine that if one needed to import every function from a module
to use it, that this way of segmenting code would fall out of favour very quickly.
Fortunately, Julia provides the export keyword, which can be used to specify
which functions should automatically be pulled into the current namespace when
a user imports or uses a specified module. For example, if we modify our module
to have two functions, but only want to expose the user to one of these functions
we can be explicit:

module MyModule

bar(x) println("Called bar with $x")
foo() bar("foo")

export foo

end

*This is usually a bad practice,
especially in Julia, since one can
reuse the name of a function with
one’s own data type to add func-
tionality.



Here, we have explicitly defined foo as the external API for this module. Julia
does not disallow users to import a specific function from the module, but requires
that it be explicit, like in the previous example. Now, the usage of this function is
much more developer friendly:

using MyModule
fool()

Notice that the foo function can still call all the methods inside MyModule
without a problem.

15.2.1  Modules in a Package

A package is defined inside the Project.toml file. While this can be defined manually,
one should use PkgTemplates.jl to create this for you. Inside the generated template,
one will find a single file inside of the src directory with the chosen name of your
package. This will define a module, again with the name of your package. Inside
here, one should include any other files that define modules. One can create a
nested hierarchy of functionality, just as in other languages. It is important that
all files with module definitions be loaded inside the main project module. This

module should then use the loaded modules and re-export the relevant functions.

15.2. MODULES
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