
High Performance
Computing in Julia

from the ground up.

Hardware and Software Basics

1/10

Module Aims

• Provide a mental model of how a computer works

• Make the best use of the hardware given (optimisation)

• Introduce parallel computing:
• Hardware SIMD

• Multithreading

• Multiprocessing

• GPU Programming

• Provide a mix of theory & hands-on practice with Julia

• Give you the skills to learn more

Module Overview

• Hybrid sessions to support those in other Universities

• Only assessed for PhD students (no credits for undergrad)

• Module is pass/fail, graded via unit testing

• Each week has a programming assignment, delivered via GitHub
Classroom.

Resources

• Website - https://jamiemair.github.io/mpags-high-performance-
computing/overview/

• Lecture Notes (PDF) – on the website
• Contains all lecture material, but still a WIP
• Lots of code examples in Julia
• Additional section on writing professional code (i.e. version control, documentation,

unit testing etc)

• GitHub Classroom Assignments

• Help with learning Julia:
• Look at the lecture notes
• Read the Julia manual (https://docs.julialang.org/en/v1/manual/getting-started/)
• Ask questions on the Julia Discourse (https://discourse.julialang.org/)

https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://jamiemair.github.io/mpags-high-performance-computing/overview/
https://docs.julialang.org/en/v1/manual/getting-started/
https://discourse.julialang.org/

Topics

• Week 1 - Hardware & Software Basics

• Week 2 - Optimisation

• Week 3 - Parallel Computing & Multithreading

• Week 4 - Multiprocessing

• Week 5 - GPU Programming with CUDA

Hardware – what's inside a computer?

Permanent Storage
e.g. Hard Disk Drive (HDD)

Permanent Storage

Hard Disk Drives (HDDs)

• High Capacity (up to ~30TB)

• Slow read/write (~150MB/s)

• High Latency

• Cheap (~3p per GB)

Solid State Drives (SSDs)

• Medium-High Capacity (up to ~8TB)

• Fast read/write (up to ~4-5GB/s)

• Medium Latency

• More expensive (~20p per GB)

Random Access Memory (RAM)
e.g. DDR3, DDR4, DDR5

Random Access Memory (RAM)

• Volatile – loses information
when powered off

• Expensive

• High speed (60GB/s)

• Low capacity (~10-100s of GB)

• Low latency (~10-20ns)

• Stores activate programs and
data

Memory

• “Table” of information stored in
bytes (8 bits)

• 1 byte is the smallest
addressable unit of memory

• Each byte has a numeric address

• Pointer refers to data that
contains the address of other
data

Address Data
0000 01001001

0001 11011011

0010 00000000

… …

1110 10000001

1111 00000101

Central Processing Unit (CPU)
e.g. Intel or AMD CPUs

Central Processing Unit (CPU)

• Microprocessors – containing
billions of transistors

• Performs logical computations
e.g. Arithmetic

• Interfaces with memory/storage
and I/O

• Multiple cores

• Contains its own memory (L1-L3
cache)

Von Neumann Architecture

Data and
instructions
are stored
together in
memory

Registers are used for
temporary memory

A bus is just a connection
along which information
travels

Modern CPU Architectures

x86 (32bit) or x86_64 (64 bit)

Random Access Memory (RAM)
e.g. DDR3, DDR4, DDR5

Storage
e.g. HDD/SSD

Central Processing Unit (CPU)
e.g. Intel or AMD CPUs

Graphics Processing Unit (GPU)
e.g. NVIDIA/AMD

Software – how does a computer run?

Operating Systems

• Software which manages hardware & software resources

• Provides common utilities to software (e.g. disk & network I/O)

• In control of loading software and scheduling the CPU to run the
software

• Provides virtual memory to processes, so each process has its own
memory space

• 3 main OS families – Windows, Linux and MacOS

Operating Systems

• Software which manages hardware
& software resources

• Provides common utilities to
software (e.g. disk & network I/O)

• In control of loading software and
scheduling the CPU to run the
software

• Provides virtual memory to
processes, so each process has its
own memory space

• 3 main OS families – Windows,
Linux and MacOS

Encoding Data

• Machines only understand
binary

• Types are needed to interpret
data

• Operations change based on the
type

• Common types:
• Floating Point Numbers (Float)

• Integers (Int or UInt)

• Boolean

• Characters (ASCII or Unicode)

• Have a fixed size due to the
registers in the CPU

Integer Data Types

• Direct representation in binary for unsigned integers

• Signed integers use the leading bit as a negative

• Uses a fixed amount of bits 8/16/32/64 etc

−𝟐𝟕 𝟐𝟔 𝟐𝟓 𝟐𝟒 𝟐𝟑 𝟐𝟐 𝟐𝟏 𝟐𝟎

0 0 0 0 1 0 1 1

1 0 0 0 0 0 0 1

Floating Point Types

• Represent decimal values

• Can be 16, 32 or 64 bits
Also known as half, single or double precision

• Partitions the bits into sign,
exponent and mantissa

• Similar to scientific notation

• Most use IEEE 754 Standard

Sign
(1 bit)

Exponent
(8 bits)

Mantissa
(23 bits)

• Mantissa holds significant digits

• Exponent holds the power of
two

𝑛 = (−1)𝑠× (1 + ൗ𝑚 223
) × 2𝑒−127

How do we write software?

Source Code (Julia)

f(x) = 5*x*x - 2*x + 1

Machine Code (x86 Assembly)

Compilation

Compilation (in Julia)

Compilation (in Julia)

Compilation (in Julia)

Compilation (in Julia)

Compilation (in Julia)

LLVM

• Collection of modular and reusable toolchain technology

• Provides a “front-end” library to generate LLVM IR

• Provides backends for a huge range of architectures (x86, ARM etc)

• Not an acronym – just the name of the project

Compilation (in Julia)

Compilation (in Julia)

Compilation (in Julia)

Live Demonstration

Next Session – Thursday 19th Jan

Physics B5

Bring your laptops!

Tasks:
• Create GitHub account

• Accept assignment - https://classroom.github.com/a/3bYk2x83

• Follow instructions (in README or Lecture Notes):
• Install Git & GitHub Desktop

• Install Julia

• Install VS Code & Julia extension

https://classroom.github.com/a/3bYk2x83

