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CUDA Programming Model

• CUDA provides a model for partitioning a workload into small units of 
work called threads

• This is a SIMT approach of “Single Instruction/Program Multiple 
Threads”. This program is called a kernel

• As the programmers, we have to manually partition our workload 
into threads which can perform operations in parallel

• Each thread will perform an operation dependent on its index – i.e. 
the id of the current thread



What is a kernel?

• A kernel is a program/function compiled for a device like a GPU

• Previously, these were called compute shaders, as they originally 
came about from hijacking graphics shaders for performing compute



First CUDA Kernel
Live Demonstration



Fig 1: Sivalingam, Karthee “GPU Acceleration of a Theoretical Particle Physics Application”

Why do we need blocks of threads?

❖ A block of threads has access to the same shared memory
❖ Threads within a block can synchronise with one another
❖ Threads from different blocks both have access to global memory, 

but does not have access to the same shared memory



CUDA Indexing

• Each CUDA kernel has access to a set of labels to identify the current 
thread

• A kernel is mapped onto a grid which is a collection of blocks, where 
each block contains a group of threads

• Each block has a 3D index, specifying the position in the grid

• Each thread within a block has a 3D index, specifying the position in 
the block



CUDA Indexing (1D)

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

Block Dimension: 4

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

Block Dimension: 4

Grid Dimension: 2

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)
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First CUDA Kernel (Continued)
Live Demonstration



CUDA Indexing
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Shared Memory & Synchronisation

• Sometimes it is useful to have multiple threads have access to shared 
memory

• When multiple threads have access to shared memory – we introduce 
the threat of race conditions

• We need some synchronisation mechanisms to ensure correctness



Example: Reduction (Addition)

1 6 72 3 4 5 8



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12



Example: Reduction (Addition)
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Example: Reduction (Addition)
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Example: Reduction (Addition)
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Example: Reduction (Addition)
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Example: Reduction (Addition)
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Example: Reduction (Addition)
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Example: Reduction (Addition)
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Monte-Carlo 𝜋 Estimation in 
CUDA
Live Demonstration



Further Resources

• “CUDA by Example” - https://developer.nvidia.com/cuda-example
A book written by NVIDIA engineers. It is written for C, but the API for 
Julia is very similar, making the book more accessible

• “GPU Programming in Julia” - Workshop JuliaCon 2021 -
https://www.youtube.com/watch?v=Hz9IMJuW5hU

• Julia Discourse - https://discourse.julialang.org/c/domain/gpu

• Julia Slack - https://julialang.org/slack/

https://developer.nvidia.com/cuda-example
https://www.youtube.com/watch?v=Hz9IMJuW5hU
https://discourse.julialang.org/c/domain/gpu
https://julialang.org/slack/


Final Session

Assignment

https://classroom.github.com/a/q9ycWkI6

Task:
• Calculate the visualisation for the Julia set fractal using the GPU

https://classroom.github.com/a/q9ycWkI6


Julia Set
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