
High Performance 
Computing in Julia

from the ground up.

CUDA Kernel Programming

10/10



CUDA Programming Model

• CUDA provides a model for partitioning a workload into small units of 
work called threads

• This is a SIMT approach of “Single Instruction/Program Multiple 
Threads”. This program is called a kernel

• As the programmers, we have to manually partition our workload 
into threads which can perform operations in parallel

• Each thread will perform an operation dependent on its index – i.e. 
the id of the current thread



What is a kernel?

• A kernel is a program/function compiled for a device like a GPU

• Previously, these were called compute shaders, as they originally 
came about from hijacking graphics shaders for performing compute



First CUDA Kernel
Live Demonstration



Fig 1: Sivalingam, Karthee “GPU Acceleration of a Theoretical Particle Physics Application”

Why do we need blocks of threads?

❖ A block of threads has access to the same shared memory
❖ Threads within a block can synchronise with one another
❖ Threads from different blocks both have access to global memory, 

but does not have access to the same shared memory



CUDA Indexing

• Each CUDA kernel has access to a set of labels to identify the current 
thread

• A kernel is mapped onto a grid which is a collection of blocks, where 
each block contains a group of threads

• Each block has a 3D index, specifying the position in the grid

• Each thread within a block has a 3D index, specifying the position in 
the block



CUDA Indexing (1D)

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

Block Dimension: 4

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

Block Dimension: 4

Grid Dimension: 2

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


CUDA Indexing (1D)

1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 1 1 1 2 2 2 2

Index:

Thread Index:

Block Index:

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf

Block Dimension: 4

Grid Dimension: 2

𝑖 = 𝑡 + (𝑏 − 1)𝑑𝑏

Thread Index

Array Index
Block Index

Block Dimension

https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf


First CUDA Kernel (Continued)
Live Demonstration



CUDA Indexing

Grid



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

𝑥

𝑦



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

𝑥

𝑦



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

Block (1,4)

𝑥

𝑦



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

Block (1,4)

(2,1,2) (2,2,2)

(1,1,2) (1,2,2)

𝑥

𝑦

(2,1,1) (2,2,1)

(1,1,1) (1,2,1)



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

Block (1,4)

(2,1,2) (2,2,2)

(1,1,2) (1,2,2)

𝑥

𝑦

(2,1,1) (2,2,1)

(1,1,1) (1,2,1)

(1,1,2) (1,2,2)

(2
,2

,2
)



CUDA Indexing

Block 
(1,1)

Block 
(1,2)

Block 
(1,3)

Block 
(1,4)

Block 
(2,1)

Block 
(2,2)

Block 
(2,3)

Block 
(2,4)

Block 
(3,1)

Block 
(3,2)

Block 
(3,3)

Block 
(4,4)

Block 
(4,1)

Block 
(4,2)

Block 
(4,3)

Block 
(4,4)

Grid

Block (1,4)

(2,1,2) (2,2,2)

(1,1,2) (1,2,2)

(2,1,1) (2,2,1)

(1,1,1) (1,2,1)

𝑥

𝑦

𝑥

𝑦

𝑧

Thread 
Index

(1,1,2) (1,2,2)

(2
,2

,2
)



5 7

4 6

1 3

0 2𝑥

𝑦

𝑧

𝑖 =?



5 7

4 6

1 3

0 2𝑥

𝑦

𝑧

𝑖 = 𝑥 + 𝑦𝑑𝑥 + 𝑧𝑑𝑥𝑑𝑦

Zero-Based 
Indexing



6 8

5 7

2 4

1 3𝑥

𝑦

𝑧

𝑖 = 𝑥 + (𝑦 − 1)𝑑𝑥 + (𝑧 − 1)𝑑𝑥𝑑𝑦

One-Based
Indexing



Shared Memory & Synchronisation

• Sometimes it is useful to have multiple threads have access to shared 
memory

• When multiple threads have access to shared memory – we introduce 
the threat of race conditions

• We need some synchronisation mechanisms to ensure correctness



Example: Reduction (Addition)

1 6 72 3 4 5 8



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12 Synchronise

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

16 20

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

16 20 Synchronise

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

16 20

36

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

16 20

36

Spacing: Τ8 2

Spacing: Τ8 4

Spacing: Τ8 8

Thread 1

Thread 2

Thread 3

Thread 4



Example: Reduction (Addition)

1 6 72 3 4 5 8

6 8 10 12

16 20

36

Thread 1

Thread 2

Thread 3

Thread 4



Monte-Carlo 𝜋 Estimation in 
CUDA
Live Demonstration



Further Resources

• “CUDA by Example” - https://developer.nvidia.com/cuda-example
A book written by NVIDIA engineers. It is written for C, but the API for 
Julia is very similar, making the book more accessible

• “GPU Programming in Julia” - Workshop JuliaCon 2021 -
https://www.youtube.com/watch?v=Hz9IMJuW5hU

• Julia Discourse - https://discourse.julialang.org/c/domain/gpu

• Julia Slack - https://julialang.org/slack/

https://developer.nvidia.com/cuda-example
https://www.youtube.com/watch?v=Hz9IMJuW5hU
https://discourse.julialang.org/c/domain/gpu
https://julialang.org/slack/


Final Session

Assignment

https://classroom.github.com/a/q9ycWkI6

Task:
• Calculate the visualisation for the Julia set fractal using the GPU

https://classroom.github.com/a/q9ycWkI6


Julia Set


	Default Section
	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2: CUDA Programming Model
	Slide 3: What is a kernel?
	Slide 4: First CUDA Kernel
	Slide 5
	Slide 6: CUDA Indexing
	Slide 7: CUDA Indexing (1D)
	Slide 8: CUDA Indexing (1D)
	Slide 9: CUDA Indexing (1D)
	Slide 10: CUDA Indexing (1D)
	Slide 11: CUDA Indexing (1D)
	Slide 12: CUDA Indexing (1D)
	Slide 13: CUDA Indexing (1D)
	Slide 14: First CUDA Kernel (Continued)
	Slide 15: CUDA Indexing
	Slide 16: CUDA Indexing
	Slide 17: CUDA Indexing
	Slide 18: CUDA Indexing
	Slide 19: CUDA Indexing
	Slide 20: CUDA Indexing
	Slide 21: CUDA Indexing
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Shared Memory & Synchronisation 
	Slide 26: Example: Reduction (Addition)
	Slide 27: Example: Reduction (Addition)
	Slide 28: Example: Reduction (Addition)
	Slide 29: Example: Reduction (Addition)
	Slide 30: Example: Reduction (Addition)
	Slide 31: Example: Reduction (Addition)
	Slide 32: Example: Reduction (Addition)
	Slide 33: Example: Reduction (Addition)
	Slide 34: Example: Reduction (Addition)
	Slide 35: Monte-Carlo pi Estimation in CUDA
	Slide 36: Further Resources
	Slide 37: Final Session
	Slide 38


