High Performance

Computing in Julia
from the ground up.

SIMD & The Stack and the Heap

2/10



7p)
s’
()
Ve
-
O
)
O
>
| -
i
(g
=
| -
@)
=
O
)
>
|
O
n




SIMD - Single Instruction Multiple Data

* Modern CPUs now have special, wide, registers that can store
multiple numbers.

* A 256-bit register can pack 4 64-bit values or 8 32-bit values together
for a single load operation.

* ALU contains special circuits to process all packed numbers at the
same time.

* This is hardware level parallelism, allowing the processing of multiple
elements at the same time.



Example: Vector Addition
X1 Y11 _ X1 ™)1
[le T YZ] B [Xz T YZ]

* Each operation is independent and can be done at the same time

* Can load both numbers of each vector in a single operation
* Addition of all numbers happens in one clock cycle
 Storage back in memory happens in one cycle



SSE and AVX (x86 architecture)

e Streaming SIMD Extensions (SSE) supported on most modern x86
CPUs

* Advanced Vector Extensions (AVX) expands on modern chips with
AVX-512 for larger vectors

e Usually included on higher end processors, typically
workstation/server processors like Xeon, Epyc, Threadripper etc.



Example SIMD in Julia

Traditional for Loop
function custom_ sum(numbers)
total = ©
for x in numbers
total += x
end
return total

end



Example SIMD in Julia

Traditional for Loop @simd Macro
function custom_ sum(numbers) function custom sum_simd(numbers)
total = © total = ©
for x in numbers @simd for x in numbers
total += x total += x
end end
return total return total
end end

Macro: A metaprogramming techniques which takes existing
code as an input, and manipulatesit to produce more code.



Example SIMD in Julia

Traditional for Loop
function custom_ sum(numbers)
total = ©
for x in numbers
total += x
end
return total

end

julia>numbers = rand(Float32, 128);
julia>custom_sum(numbers)
65.52533f0

@simd Macro
function custom sum simd(numbers)
total = ©
@simd for x in numbers
total += x
end
return total

end

julia>custom_sum_simd(numbers)
65.52534f0



Example SIMD in Julia

Traditional for Loop @simd Macro
function custom_ sum(numbers) function custom sum_simd(numbers)
total = © total = ©
for x in numbers @simd for x in numbers
total += x total += x
end end
return total return total
end end
*Floating point arithmetic is not associative!
julia>numbers = rand(Float32, 128); (a+b)+c+a+ (b+c)

julia>custom_sum(numbers) julia>custom_sum_simd(numbers)
65.52533f0 65.52534f0



Be N Ch ImMada rk| ng Sl I\/l D *Functions benchmarked here

are slightly different

julia> using BenchmarkTools

julia> @btime custom_sum(Snumbers)
84.265 ns (0 allocations: O bytes)
65.52533f0

julia> @btime custom_sum_simd(Snumbers)
7.500 ns (0 allocations: 0 bytes)

65.52534f0

* Around 11x faster for adding 5 characters.



0

e 1 1o o
o 1o
000 0O
100 - 1
0 0101
10 0o +1:00
1e 0101101
110
re0 01 001
00 10
0 1 1 0
1 0010100
! 9170 0
0 0
1
001 10 1

11+ 0 1 011
0 1710
0 0110
13050911
110 o011
10101 00
1000 101
0 0 00
110 000001
1100 01 0o
01r0110 » 111
1 0111 0
0o 1 0O+1v 01
0:'0 01110
0O-0 000 -Qo00O

1

©1:0101

1:0
11
10 0000

0
10

10

11

00

0

1 0
1 o 0
10 01110
10011001

110 1010010 1

0 0101
0010 1011
1 +«10 O 1
1+ 0 1
' 0o 1
0o 0 10 01
0 .l L 1.
0 10
1 +0 0
Qo ©




A Stack

e A stack is an extremely common data structure used throughout CS
* Linear data structure where you can only access items from the top




Example: Computing algebraic expression

How write the addition of a and b?

add(a,b) a+b ab +

Prefix Infix Postfix



Example: Postfix evaluation with a stack

* Take the expression in infix:
5x(x +2)—1

* In postfix we get:
15x2x+ XX —



Example: Postfix evaluation with a stack

/

R1

R2

CPU \

15x2x+ XX —

/ Memory Stack \




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

!

:r_i_ESxe+xx—

/ Memory Stack \




Example: Postfix evaluation with a stack
4

115 2 x + X X —
/ CPU \ / Memory Stack \

R1

R2

N >




Example: Postfix evaluation with a stack
l

15(xi2 x + X X —
/ CPU \ / Memory Stack \

R1

R2

/III
\J




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

!

15x:r_é_ix+xx—

~

<
@
3
o
=35
-
)
~+
Q)
(@)
Q

\J




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

!

15 20xH X X —

~

<
@
3
o
=35
-
)
~+
Q)
(@)
Q




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

!

15x2x:?|:i><><—

~

<
@
3
o
=35
-
)
~+
Q)
(@)
Q




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

!

15x2x:?|:i><><—

~

<
@
3
o
=35
-
)
~+
Q)
(@)
Q

\J




Example: Postfix evaluation with a stack
.

15x2 x:r_-l:ix X —
/ CPU \ / Memory Stack \

R1

R2

/III
\J




Example: Postfix evaluation with a stack
.

15x2 x:r_-l:ix X —
/ CPU \ / Memory Stack \

R1 x+ 2

R2

/III
\J




Example: Postfix evaluation with a stack
.

15x2 x:r_-l:ix X —
/ CPU \ / Memory Stack \

R1

R2

/III
\J




Example: Postfix evaluation with a stack
l

15x2x +:r_>-gix —
/ CPU \ / Memory Stack \

R1

R2

/III
\J




Example: Postfix evaluation with a stack
l

15x2x +:r_>-gix —
/ CPU \ / Memory Stack \

R1 x+ 2

R2

/III
\J




Example: Postfix evaluation with a stack
l

15x2x +:r_>-gix —
/ CPU \ / Memory Stack \

R1 x+ 2

R2

N >




Example: Postfix evaluation with a stack

b4
15x2x HXIX —
/ CPU \ / Memory Stack \
.
:

N >




Example: Postfix evaluation with a stack
l

15x2x +:r_>-gix —
/ CPU \ / Memory Stack \

R1

R2

x%+ 2x

/III
\J




Example: Postfix evaluation with a stack
l

15x2x+ x:r_;gi—
/ CPU \ / Memory Stack \

R1

R2

x%+ 2x

/III
\J




Example: Postfix evaluation with a stack

b4
15x2x+ X|X—
/ CPU \ / Memory Stack \
.
:

N >




Example: Postfix evaluation with a stack

p

R1

R2

CPU \

X%+ 2x

!

Sk,
15x2x+ X|X—

/ Memory Stack \




Example: Postfix evaluation with a stack

p

R1

R2

CPU \

5x% + 10x

!

Sk,
15x2x+ X|X—

/ Memory Stack \




Example: Postfix evaluation with a stack
l

15x2x+ x:r_;gi—
/ CPU \ / Memory Stack \

R1

R2

5x% + 10x




Example: Postfix evaluation with a stack
l

‘

15x2x+><><_—_:

/ CPU \ / Memory Stack \

R1

R2

5x% + 10x




Example: Postfix evaluation with a stack

p

R1

R2

CPU \

5x% + 10x

15x2x+ XX

-‘

!

/ Memory Stack \




Example: Postfix evaluation with a stack

p

R1

R2

CPU \

5x% + 10x

15x2x+ XX

-‘

!

/ Memory Stack \




Example: Postfix evaluation with a stack

p

R1

R2

CPU \

5x%+ 10x + 1

15x2x+ XX

-‘

!

/ Memory Stack \




Example: Postfix evaluation with a stack

/

R1

R2

CPU \

15x2x+ XX —

/ Memory Stack \

S5x2+ 10x + 1




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

} N\ )
. factorial(4
 Stack is used as local memory for @ . stack
a function call ) frame
J
. _ <
e A stack frame is created for each factorial(3)
function call
f <
factorial(2)
> <
factorial(1)

- J




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

. factorial(4) )
 Stack is used as local memory for
a function call )
* A stack frame is created for each i factorial(3) h
function call
. _/
4 factorial(2) A

2
1

- )

stack
frame



factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

factorial(4) )
 Stack is used as local memory for
a function call )
e A stack frame is created for each i factorial(3) h
function call
. J
4 factorial(2) A

- )

stack
frame



factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

factorial(4) )
 Stack is used as local memory for . stack
a function call ) frame
J
e A stack frame is created for each # factorial(3) A

uneton <
2

- j




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

) N\ )
. factorial(4
 Stack is used as local memory for =l . stack
a function call frame
J
e A stack frame is created for each factorial(3) A
function call S

J




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

-

)

factorial(4)

 Stack is used as local memory for . stack

2 function el
J

* A stack frame is created for each - /
function call




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

- factorial(4
* Stack is used as local memory for (4)

a function call

e A stack frame is created for each
function call




factorial(n) = n X factorial(n — 1)
T h e Sta C k factorial(1) = 1

 Stack is used as local memory for

a function call
e A stack frame is created for each
function call

e Eventually, the result of the
function will replace the
function call



The Stack

Advantages:

e Stack memory that is no longer used can be safely overwritten
Limitations:

* Size of variables stored on the stack must be known at compile time
* Physical addresses and offsets are stored in the read-only instructions
 Size cannot depend on input arguments

* Stack has a maximum size



The Heap

* A large section of memory to store objects of an arbitrary size

* Objects whose sizes are not known at compile time are stored on the
heap (e.g. arrays)

* Need some mechanism to manage the available memory:

o Find memory with enough space that isn’t being used currently
o Keep track of all memory that is currently being used
o Free up memory when it is no longer needed

 Many modern programming languages use a Garbage Collector (GC)
which cleans up memory once it is no longer being used

The Ten Million Room Hotel - fasterthanlime
https://youtu.be/553luW-0eZw?t=331



https://youtu.be/553luW-0eZw?t=331

Process Memory

-

Virtual <
Heap
memory

Stack grows down

Heap grows up

Constant Data

Instructions




Workshop — Thursday 19/01/2023

Assignment

https://classroom.github.com/a/3bYk2x83

Tasks:

* Clone your repository
* Read through the README for assignment details
e Ask if you have any questions


https://classroom.github.com/a/3bYk2x83

