
High Performance
Computing in Julia

from the ground up.

SIMD & The Stack and the Heap

2/10

SIMD - Vector Instruction Sets

SIMD – Single Instruction Multiple Data

• Modern CPUs now have special, wide, registers that can store
multiple numbers.

• A 256-bit register can pack 4 64-bit values or 8 32-bit values together
for a single load operation.

• ALU contains special circuits to process all packed numbers at the
same time.

• This is hardware level parallelism, allowing the processing of multiple
elements at the same time.

Example: Vector Addition

• Each operation is independent and can be done at the same time

• Can load both numbers of each vector in a single operation

• Addition of all numbers happens in one clock cycle

• Storage back in memory happens in one cycle

SSE and AVX (x86 architecture)

• Streaming SIMD Extensions (SSE) supported on most modern x86
CPUs

• Advanced Vector Extensions (AVX) expands on modern chips with
AVX-512 for larger vectors

• Usually included on higher end processors, typically
workstation/server processors like Xeon, Epyc, Threadripper etc.

Example SIMD in Julia

Traditional for Loop
function custom_sum(numbers)

total = 0

for x in numbers

total += x

end

return total

end

Example SIMD in Julia

Traditional for Loop
function custom_sum(numbers)

total = 0

for x in numbers

total += x

end

return total

end

@simd Macro
function custom_sum_simd(numbers)

total = 0

@simd for x in numbers

total += x

end

return total

end

Macro: A metaprogramming techniques which takes existing
code as an input, and manipulates it to produce more code.

Example SIMD in Julia

Traditional for Loop
function custom_sum(numbers)

total = 0

for x in numbers

total += x

end

return total

end

@simd Macro
function custom_sum_simd(numbers)

total = 0

@simd for x in numbers

total += x

end

return total

end

julia> numbers = rand(Float32, 128);
julia> custom_sum(numbers)
65.52533f0

julia> custom_sum_simd(numbers)
65.52534f0

Example SIMD in Julia

Traditional for Loop
function custom_sum(numbers)

total = 0

for x in numbers

total += x

end

return total

end

@simd Macro
function custom_sum_simd(numbers)

total = 0

@simd for x in numbers

total += x

end

return total

end

julia> numbers = rand(Float32, 128);
julia> custom_sum(numbers)
65.52533f0

julia> custom_sum_simd(numbers)
65.52534f0

*Floating point arithmetic is not associative!
𝑎 + 𝑏 + 𝑐 ≠ 𝑎 + (𝑏 + 𝑐)

Benchmarking SIMD

julia> using BenchmarkTools

julia> @btime custom_sum($numbers)

84.265 ns (0 allocations: 0 bytes)

65.52533f0

julia> @btime custom_sum_simd($numbers)

7.500 ns (0 allocations: 0 bytes)

65.52534f0

• Around 11x faster for adding 5 characters.

*Functions benchmarked here
are slightly different

The Stack and the Heap

A Stack

• A stack is an extremely common data structure used throughout CS

• Linear data structure where you can only access items from the top

Example: Computing algebraic expression

How write the addition of 𝑎 and 𝑏?

PostfixInfixPrefix

Example: Postfix evaluation with a stack

• Take the expression in infix:
5𝑥 𝑥 + 2 − 1

• In postfix we get:
1 5 𝑥 2 𝑥 + × × −

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥 + 2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥 + 2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥 + 2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

2

𝑥 + 2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

𝑥 + 2

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

𝑥2+ 2𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

𝑥2+ 2𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

𝑥2+ 2𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥

𝑥2+ 2𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

𝑥2+ 2𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

5𝑥2+ 10𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

5𝑥2+ 10𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

5𝑥2+ 10𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5

5𝑥2+ 10𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5𝑥2+ 10𝑥

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

1

5𝑥2+ 10𝑥 + 1

Example: Postfix evaluation with a stack

1 5 𝑥 2 𝑥 + × × −
Memory StackCPU

R1

R2

ALU

5𝑥2+ 10𝑥 + 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4

factorial(3)

3

factorial(2)

2

factorial(1)

1

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4

factorial(3)

3

factorial(2)

2

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4

factorial(3)

3

factorial(2)

2

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4

factorial(3)

3

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

2

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4

factorial(3)

6

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

4
6

stack
frame

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

factorial(4)

24

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

• Stack is used as local memory for
a function call

• A stack frame is created for each
function call

• Eventually, the result of the
function will replace the
function call

24

factorial 𝑛 = 𝑛 × factorial 𝑛− 1

factorial 1 = 1

The Stack

Advantages:

• Stack memory that is no longer used can be safely overwritten

Limitations:

• Size of variables stored on the stack must be known at compile time

• Physical addresses and offsets are stored in the read-only instructions

• Size cannot depend on input arguments

• Stack has a maximum size

The Heap

• A large section of memory to store objects of an arbitrary size

• Objects whose sizes are not known at compile time are stored on the
heap (e.g. arrays)

• Need some mechanism to manage the available memory:
o Find memory with enough space that isn’t being used currently

oKeep track of all memory that is currently being used

o Free up memory when it is no longer needed

• Many modern programming languages use a Garbage Collector (GC)
which cleans up memory once it is no longer being used

The Ten Million Room Hotel - fasterthanlime
https://youtu.be/553luW-0eZw?t=331

https://youtu.be/553luW-0eZw?t=331

Process Memory

Instructions

Constant Data

Heap

Stack

Virtual
memory

Stack grows down

Heap grows up

Workshop – Thursday 19/01/2023

Assignment

https://classroom.github.com/a/3bYk2x83

Tasks:
• Clone your repository

• Read through the README for assignment details

• Ask if you have any questions

https://classroom.github.com/a/3bYk2x83

