
High Performance
Computing in Julia

from the ground up.

Measuring Performance & Optimisation

3/10

Aims

• To be able to profile and benchmark Julia code

• To understand the basics of computational complexity

• To begin learning some optimisation techniques (in Julia)

Measuring Performance

Which resources can
a program consume?

Wall Time

Clock Cycles

CoresCache

Memory

Bandwidth

Disk I/O

Storage

Network I/O

Measuring Wall Time

• The CPU has an internal clock – used to synchronise action across the
CPU

• Can be used to measure how long a piece of code takes by comparing
the clock before and after execution

• Can use the @time macro for simplicity, but this is not very accurate

Example: Sum of cubes

julia> f(arr) = sum(x->x^3, arr);

julia> arr = rand(1024);

julia> @time f(arr)

0.042326 seconds (56.16 k allocations: 3.067 MiB, 99.96% compilation time)

251.11661067703318

julia> @time f(arr)

0.000005 seconds (1 allocation: 16 bytes)

251.11661067703318

• First usage includes compile time - always measure twice

BenchmarkTools.jl

$ for interpolation

More accurate results

Why Benchmark?

• Time taken to execute code can be highly variable

• Some variability can be due to scheduling on the CPU, tasks may be
interrupted while processing

• CPU thermals may cause it to lower the clock speed to avoid damage

• Boost clocks are common on modern CPUs, which is turned off when
multiple cores are used

Profiling

• Statistical profilers sample your program during execution

• Interrupts the program and takes note of where in a stack frame
(function) the program is

• Can infer which pieces of code take the longest, as they have the
most samples

• Can show results as a flame graph

Profiling: Flame Graph

Profiling + Optimising Technique

• Use profiling to identify the slow functions in your code

• Use macros from BenchmarkTools.jl to measure the performance of
the slow functions

• Only optimise the part of your code that is slow!

• Keep the old code for reference to compare benchmarks

• Keep hardware the same!

• Minimise number of concurrent tasks

Computational Complexity – Big 𝒪 notation

A

B

C

F
D

E

Computational Complexity

• All computers have different hardware, with varying speed

• How do you compare algorithms on different hardware?

• We compare the computational complexity of the algorithms, which
measures how execution time will scale with varying input sizes

• The complexity classifies the number of resources required to run it,
mostly focusing on computation time (or memory storage).

Computational Complexity

Computational Complexity
log 𝑡 − 𝑡0 = 𝑚 log𝑛 + 𝑐

𝑡 = 𝑒𝑐𝑛𝑚 + 𝑡0

Computational Complexity
log 𝑡 − 𝑡0 = 𝑚 log𝑛 + 𝑐

𝑡 = 𝑒𝑐𝑛𝑚 + 𝑡0

∆ log(𝑡 − 𝑡0)

∆ log𝑛

𝑚 =
∆ log(𝑡 − 𝑡0)

∆ log𝑛

Computational Complexity
log 𝑡 − 𝑡0 = 𝑚 log𝑛 + 𝑐

𝑡 = 𝑒𝑐𝑛𝑚 + 𝑡0

𝑚 =
∆ log(𝑡 − 𝑡0)

∆ log𝑛
= 1

Computational Complexity

𝑡(𝑛) = 𝑒𝑐𝑛𝑚 + 𝑡0

𝑚 =
∆ log(𝑡 − 𝑡0)

∆ log𝑛
= 1

Computational Complexity

𝑡(𝑛) = 𝑎𝑛 + 𝑏

𝑚 =
∆ log(𝑡 − 𝑡0)

∆ log𝑛
= 1

Computational Complexity

𝑡(𝑛) = 𝒪(𝑛)

𝑚 =
∆ log(𝑡 − 𝑡0)

∆ log𝑛
= 1

Big 𝒪 notation

Big notation

• Asymptotic Computational Complexity – only keep largest growing
factors, and throw away constants

• Usually deals with the worst-case complexity, but sometimes
average-case is also interesting

• Is interesting for problems which scale, if problem size is small,
benchmarking is often preferred

• Helps to choose the right algorithm for a given problem size

Example – Nearest Neighbour

A

C
B

F

H

G

E

D

Node Neighbour

A B

B C

C B

D G

E F

F G

G F

H G

Example – Nearest Neighbour

Example – Nearest Neighbour

𝒪(1)

Example – Nearest Neighbour

𝒪(𝑛)
(assumption)

Example – Nearest Neighbour

𝒪(𝑛)

𝒪(1)

Example – Nearest Neighbour

𝒪(𝑛)

𝒪(1)

𝒪(1)

Example – Nearest Neighbour

𝒪(𝑛)

𝒪(1)

𝒪(𝑛)

Example – Nearest Neighbour

𝒪(𝑛)

𝒪(𝑛)

Example – Nearest Neighbour

𝒪(𝑛)

𝒪(𝑛2)

Example – Nearest Neighbour

𝒪(𝑛2)

Example – Nearest Neighbour

𝒪(𝑛2)

Example – Recursive calls

Example – Sorted Insert

Summary

• Choose the best algorithm for your use case

• Constants matter when the problem size is smaller

• Should always benchmark the code to get an idea of the constants

• Can use a combination of complexity and benchmarking to predict
how long execution will take for a larger input / work out the
maximum input size

Optimisation

Why optimise our code?

Get results faster–
quickly iterate on our

experiments

Increase of your own
productivity

Scale up the
experiments to larger
sizes and longer times

Use fewer compute
resources on the HPC

Why is code slow in the first place?

• Incorrect algorithms are chosen

• Contains unnecessary operations

• Program has to spend time working out what to do, instead of having
the instructions ready (not compiled)

• Choices are made to cooperate with language design, but cause poor
performance (i.e. must vectorise code with numpy)

Speed of operations

Example: Vectorisation

Native Python
import math

def f_native(x_values):

y_values = []

for x in x_values:

y = math.exp(x)*math.sin(x)*x + x**4 + 5 * math.sqrt(3*x)

y_values.append(y)

return y_values

Numpy
import numpy as np

def f_np(x):

return np.exp(x)*np.sin(x)*x + x**4 + 5 * np.sqrt(3*x)

52.5 ms ± 446 µs per loop
(mean ± std. dev. of 7
runs, 10 loops each)

3.16 ms ± 29.2 µs per loop
(mean ± std. dev. of 7
runs, 10 loops each)

~16𝑥 speedup

Example: Vectorisation

Native Julia
function f_vectorised(x)

y = similar(x)

@. y = exp(x)*sin(x)*x + x^4 + 5 * sqrt(3*x)

return y

end

function f_native(x_array)

y = similar(x_array)

@inbounds for i in eachindex(x_array)

x = x_array[i]

y[i] = exp(x)*sin(x)*x + x^4 + 5 * sqrt(3*x)

end

return y

end

Numpy
import numpy as np

def f_np(x):

return np.exp(x)*np.sin(x)*x + x**4 + 5 * np.sqrt(3*x)

3.16 ms ± 29.2 µs per loop
(mean ± std. dev. of 7
runs, 10 loops each)

~3.5𝑥 speedup

f_vectorised -> 942.500 μs (2 allocations: 512.11 KiB)

f_native -> 900.000 μs (2 allocations: 512.11 KiB)

Example: Vectorisation

Julia

• Julia will fuse broadcast operations
together

• Broadcasting does not allocate
intermediate results

• Vectorised vs for loop is aesthetic
• Compiler can automatically simd

the code
• Does not need to pass the array

through the language barrier – all
native Julia

Numpy

• Requires rewriting the code into a
vectorised loop

• Moves the for loop into a compiled
function (in C)

Hardware SIMD vs Vectorisation

• @simd just gives the compiler more leeway to use hardware level
vector instructions (SSE and AVX) on operations that may change
results

• Compiler will automatically hardware vectorise code in specific cases

• Read the help for more info: help?> @simd

Cache and Memory Locality

• All arrays are stored in a contiguous block of memory

• Operations on an array done in order are much faster due to cache

• Cache lines store an entire line of memory (~128 bits)

Address (Hex) Data

… …

5F19 01001001

5F1A 00001000

5F1B 10000001

5F1C 00011110

… …

Multidimensional Arrays

• Even multidimensional arrays
are stored linearly in memory

• Indexing scheme must be used
to calculate linear index from
cartesian index

• Row-major:
𝑘 = 𝑗𝑁𝑦 + 𝑖

• Column-major:
𝑘 = 𝑖𝑁𝑥 + 𝑗

• Julia uses column-major

Multidimensional Arrays

• Order of iteration makes a big
performance difference

Multidimensional Arrays

• Julia arrays can be linearly
indexed – same performance

Heap Allocations

• When we say “allocations”, we refer to heap allocations

• Allocating memory on the heap is costly

• Memory needs to be cleaned up by the Garbage Collector (GC)

• The GC will interrupt processing to clean up memory – performance
hit!

Preallocating vs Appending

Reusing Memory: Caching

• Can pre-allocate storage for the
results

• Still need to allocate the
memory, but only needs to be
done once

• Can make a difference on speed,
but also memory

Reusing Memory: Avoid Copying

• Slicing an array allocates new
memory for that array

• We can instead create a view
into that data to point at the
same memory

• Changing values in a view will
propagate back to the original
array

• Sometimes copying may be
faster due to memory locality

Avoiding the Heap – Stack Allocating

• Can use packages like StaticArrays.jl to create small arrays on the
stack

• Can be used to make the code more readable, and avoiding
allocations

• These are immutable by default

• Useful for small vectors representing positions/velocities etc

Profiling & Reducing
Allocations

Live Demonstration

Workshop – Thursday 26/01/2023

Assignment

Link will be on the website

Tasks:
• Optimise the nearest neighbour algorithm

• Read through the README for assignment details

