High Performance

Computing in Julia
from the ground up.

Measuring Performance & Optimisation
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Aims

* To be able to profile and benchmark Julia code
* To understand the basics of computational complexity
* To begin learning some optimisation techniques (in Julia)
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Measuring Wall Time

* The CPU has an internal clock — used to synchronise action across the
CPU

* Can be used to measure how long a piece of code takes by comparing
the clock before and after execution

* Can use the @time macro for simplicity, but this is not very accurate



Example: Sum of cubes

julia> f(arr) = sum(x->x"3, arr);
julia> arr = rand(1024);
julia> @time f(arr)
0.042326 seconds (56.16 k allocations: 3.067 MiB, 99.96% compilation time)
251.11661067703318
julia> @time f(arr)
0.000005 seconds (1 allocation: 16 bytes)
251.11661067703318

* First usage includes compile time - always measure twice



BenchmarkTools.|l

julia> using BenchmarkTools
S for interpolation
julia> @benchmark f($arr)
BenchmarkTools.Trial: 10000 samples with 960 evaluations.
Range (min .. max): 86.071 ns .. 117.006 ns | GC (min .. max): ©.00% .. 0.00%
Time (median): 88.076 ns ' GC (median): 0.00%
Time (mean + 0): 88.893 ns + 1.341 ns | GC (mean = 0): ©.090% * 0.00%

} I [T a—

86.1 ns Histogram: log(frequency) by time 93.8 ns <

Memory estimate: © bytes, allocs estimate: ©.

More accurate results




Why Benchmark?

* Time taken to execute code can be highly variable

* Some variability can be due to scheduling on the CPU, tasks may be
interrupted while processing

* CPU thermals may cause it to lower the clock speed to avoid damage

* Boost clocks are common on modern CPUs, which is turned off when
multiple cores are used



Profiling

» Statistical profilers sample your program during execution

* Interrupts the program and takes note of where in a stack frame
(function) the program is

* Can infer which pieces of code take the longest, as they have the
most samples

* Can show results as a flame graph



Profiling: Flame Graph




Profiling + Optimising Technique

* Use profiling to identify the slow functions in your code

* Use macros from BenchmarkTools.jl to measure the performance of
the slow functions

* Only optimise the part of your code that is slow!

* Keep the old code for reference to compare benchmarks
* Keep hardware the same!

* Minimise number of concurrent tasks



— Big O notation

Deep Neural Network
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Computational Complexity

* All computers have different hardware, with varying speed
* How do you compare algorithms on different hardware?

 We compare the computational complexity of the algorithms, which
measures how execution time will scale with varying input sizes

* The complexity classifies the number of resources required to run it,
mostly focusing on computation time (or memory storage).



Computational Complexity
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function elementmul(a, b) i

# Make sure the inputs are the same size
@assert all(size(a).==size(b))
# Allocate a new array to store the result
¢ = similar(a)
for i in eachindex(a)

c[i] = a[i] * b[i]
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Figure 5.4. Time taken when using
elementmul for several values of n.
The time taken is measured several
times for each value of n using the
@belapsed macro from Benchmark-
Tools.jl.



Computational Complexity
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Computational Complexity

function elementmul(a, b)

end

# Make sure the inputs are the same size

@assert all(size(a).

# Allocate a new array to store the result

C similar(a)
for i in eachindex(a)

c[1]
end
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Figure 5.4. Time taken when using
elementmul for several values of n.
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@belapsed macro from Benchmark-
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function elementmul(a, b)
# Make sure the inputs are the same size
@assert all(size(a).==size(b))

# Allocate a new array to store the result 1% |
c = similar(a) £ i
for i in eachindex(a) i
cl[i] a[i] b[1]
end
return c 0
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Figure 5.4. Time taken when using
elementmul for several values of n.
The time taken is measured several
times for each value of n using the
@belapsed macro from Benchmark-
Tools.jl.



Computational Complexity
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Computational Complexity
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Computational Complexity

function elementmul(a, b)
# Make sure the inputs are the same size

end

@assert all(size(a).==size(b))

# Allocate a new array to store the result

¢ = similar(a)

for i in eachindex(a)
c[i] = ali] * b[1]

end

return c

Big O notation
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Figure 5.4. Time taken when using
elementmul for several values of n.
The time taken is measured several
times for each value of n using the
@belapsed macro from Benchmark-
Tools.jl.




Big O notation

* Asymptotic Computational Complexity — only keep largest growing
factors, and throw away constants

* Usually deals with the worst-case complexity, but sometimes
average-case is also interesting

* |s interesting for problems which scale, if problem size is small,
benchmarking is often preferred

* Helps to choose the right algorithm for a given problem size



Example — Nearest Neighbour
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Example — Nearest Neighbour

function nearestneighbour(pointcloud)

end

# Get the dimension and size of the point cloud
N, D = size(pointcloud)
neighbours = zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i = pointcloud[:, 1i]
# Set the current minimum distance to the
# largest possible value, given the type.
min_distance_squared = typemax(eltype(pointcloud))

for j in 1:N
point_j = pointcloud[:, j]
distance_squared = sum((point_i .- point_j)."2)

if min_distance_squared < distance_squared
min_distance_squared = distance_squared
neighbours[i] = j
end
end
end
return neighbours




Example —

o)

Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
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Example —

o(n)
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Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
N, D = size(pointcloud)
neighbours = zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i = pointcloud[:, 1i]
# Set the current minimum distance to the

# largest possible value, given the type.
min_distance_squared = typemax(eltype(pointcloud))

for j in 1:N
point_j = pointcloud[:, j]
distance_squared = sum((point_i .- point_j)."2)

if min_distance_squared < distance_squared
min_distance_squared = distance_squared
neighbours[i] = j
end
end
end
return neighbours
end




Example — Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud

N, D = size(pointcloud)
(?(Tl) {neighbours = zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i = pointcloud[:, 1i]
# Set the current minimum distance to the
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end

o)

end
end
return neighbours
end




Example — Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
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end

o)

end
end
return neighbours
end




Example — Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
N, D = size(pointcloud)
(?(Ti) neighbours = zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i = pointcloud[:, 1i]
# Set the current minimum distance to the

(?(1) # largest possible value, given the type.
min_distance_squared = typemax(eltype(pointcloud))
for j in 1:N
point_j = pointcloud[:, j]
distance_squared = sum((point_i .- point_j)."2)

if min_distance_squared < distance_squared
min_distance_squared = distance_squared
neighbours[i] = j

end

O(n)

end
end
return neighbours
end




Example — Nearest Neighbour

O(n)

function nearestneighbour(pointcloud)

# Get the dimension and size of the point cloud

N, D = size(pointcloud)

neighbours = zeros(Int, N)

# Allocate a new array to store the result

for i in 1:N

point_i = pointcloud[:, 1i]

# Set the current minimum distance to the

# largest possible value, given the type.
min_distance_squared = typemax(eltype(pointcloud))

for j in 1:N
O point_j = pointcloud[:, j]
(Tl)< distance_squared = sum((point_i .- point_j)."2)

end

if min_distance_squared < distance_squared
min_distance_squared = distance_squared
neighbours[i] = j

end

\. end

end
return neighbours




Example — Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
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¢ for i in 1:N
point_i = pointcloud[:, 1i]
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end
end

\ end
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end




Example — Nearest Neighbour
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Example — Nearest Neighbour

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
/N, D = size(pointcloud)
neighbours = zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i = pointcloud[:, 1i]
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\ end
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end




Example — Recursive calls

function recursivecalc(n, a)
if n==1
return a*a
end

S 0.0
for i in 1:n

S recursivecalc(n-1, 1)
end

return s
end

O(n!)



Example — Sorted |Insert

function insertintosorted! (numbers, num)
n Length(numbers)
startpoint 1
endpoint n

while startpoint-endpoint 1 _ _ _
midpoint (startpoint+endpoint) =2 Alg_om_hm 5:6. A simple ?lgorlthm
. . . which inserts a number into an al-
1f num numbers[midpoint] ad ted list, making sure the
) ; ) ready sorte , g
endpoint midpoint list is still sorted after insertion.
elseif num > numbers[midpoint] This algorithm assumes the list is
startpoint midpoint sorted in ascending order.
else
insert! (numbers, midpoint, num)
return
end
end
insert!(numbers, startpoint, num)
nothing

end

O(logn)



Summary

* Choose the best algorithm for your use case
* Constants matter when the problem size is smaller
e Should always benchmark the code to get an idea of the constants

e Can use a combination of complexity and benchmarking to predict
how long execution will take for a larger input / work out the
maximum input size
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Why optimise our code?

Get results faster— Increase of your own Scale up the
quickly iterate on our productivity experiments to larger
experiments sizes and longer times

-

Use fewer compute
resources on the HPC



Why is code slow in the first place?

* Incorrect algorithms are chosen
* Contains unnecessary operations

* Program has to spend time working out what to do, instead of having
the instructions ready (not compiled)

* Choices are made to cooperate with language design, but cause poor
performance (i.e. must vectorise code with numpy)



Speed of operations
5

ithare.com Operation Costin CPU Cycles
“Simple” register-register op (ADD,OR, etc.)
Memory write

Bypass delay: switch between

integer and floating-point units
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Floating-point/vector addition
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Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if” (branch misprediction)
Floating-point division

128-bit vector division

Atomics/CAS

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket atomics/CAS
(guesstimate)

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)

C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

Not all CPU operations are created equal

10° 101 102 103 104 105 108
=
o
2|
.
7-21
o
om0 |
(-
=
==
(oo |
oso
oo |
=
=m
oo |

10000 - 1 million




Example: Vectorisation

Native Python Numpy
import math import numpy as np
def f native(x_values): def f np(x):
y _values = [] return np.exp(x)*np.sin(x)*x + x**4 + 5 * np.sqrt(3*x)

for x in x_values:
y = math.exp(x)*math.sin(x)*x + x**4 + 5 * math.sqrt(3*x)
y_values.append(y)

return y_values

52.5 ms + 446 ps per loop 3.16 ms + 29.2 ps per loop
(mean * std. dev. of 7 ~16x speedup (mean * std. dev. of 7
runs, 10 loops each) runs, 10 loops each)



Example: Vectorisation

Native Julia Numpy

function f_vectorised(x) import numpy as np
y = similar(x) def £ np(x):
@y = expO)*sin()™ + x4 + 5 % sqri(3%) return np.exp(x)*np.sin(x)*x + x**4 + 5 * np.sqrt(3*x)
return y

end

function f_native(x_array)
y = similar(x_array)
@inbounds for i in eachindex(x_array)
X = x_array[i]

y[i] = exp(x)*sin(x)*x + x*4 + 5 * sqrt(3*x)

3.16 ms + 29.2 ps per loop
~3.5x speedup (mean * std. dev. of 7
runs, 10 loops each)

end
return y

end

f vectorised -> 942.500 ps (2 allocations:512.11 KiB)

f_native -> 900.000 ps (2 allocations:512.11 KiB)



Example: Vectorisation

Julia Numpy

* Julia will fuse broadcast operations ¢ Requires rewriting the code into a
together vectorised loop

* Broadcasting does not allocate * Moves the for loop into a compiled
intermediate results function (in C)

* Vectorised vs for loop is aesthetic

* Compiler can automatically simd
the code

* Does not need to pass the array
through the language barrier — all
native Julia



Hardware SIMD vs Vectorisation

e @simd just gives the compiler more leeway to use hardware level
vector instructions (SSE and AVX) on operations that may change
results

* Compiler will automatically hardware vectorise code in specific cases
* Read the help for more info:



Cache and Memory Locality

 All arrays are stored in a contiguous block of memory
e Operations on an array done in order are much faster due to cache

e Cache lines store an entire line of memory (~128 bits)

Slowest

5F19 01001001
L3 Cache

5F1A 00001000

5F1B 10000001

Fastest

5F1C 00011110




Multidimensional Arrays

* Even multidimensional arrays
are stored linearly in memory

* Indexing scheme must be used
to calculate linear index from a a a
cartesian index

Row-major order
a a a

Qe a..>a
* Row-major: - | -
k= jN, +i Column-major order
e Column-major: 9 A 4
k =iN, +j 8 /3 /@

* Julia uses column-major a a a



Multidimensional Arrays

function row _major _matrix_add!(C, A, B)

e Order of iteration makes a big
performance difference Ginbounds for 1 in mxes(a, 21

for j in axes(A, 1)

julia> @benchmark row_major_matrix_add!($C, $A, $B) Cli, j] = A[1, j] + B[1, j]

BenchmarkTools.Trial: 184 samples with 1 evaluation. end
Range (min .. max): 26.97@ ms .. 27.820 ms | GC (min .. max): ©.00% .. ©.00% end
Time (median): 27.200 ms ' GC (median): 0.00% nothing

Time (mean * 0): 27.218 ms + 133.593 ps GC (mean + 0): ©.88% + ©.00%

end

__-LL._._._._._..

27 ms Histogram: frequency by time 27.8 ms <

function column_major_matrix_add!(C, A, B)

Memory estimate: @ bytes, allocs estimate: @.
@assert size(C)==size(A)==size(B)

julia> @benchmark column_major_matrix_add!($C, $A, $B) @inbounds for j = axes(A, 2)
BenchmarkTools.Trial: 4000 samples with 1 e\l.raluation. for i in axes(A, 1)

Range (min .. max): 1.187 ms .. 1.447 ms | GC (min .. max): ©.00% .. 8.00% q c . . : -
Time (median): 1.215 ms : GC (median): 0.00% Cl1, ]] = AL, J] + BI1, ]]
Time (mean + 0): 1.23@ ms + 36.353 ps | GC (mean * 0): ©.00% * 0.00% end

end
il I el | nothing
_ _ end
1.19 ms Histogram: log(frequency) by time 1.36 ms <

Memory estimate: @ bytes, allocs estimate: @.



Multidimensional Arrays

e Julia arrays can be linearly
indexed — same performance

julia> @benchmark vector_add!($C, $A, $B)
BenchmarkTools.Trial: 3984 samples with 1 evaluation.

Range (min .. max): 1.193 ms .. 1.599 ms | GC (min .. max): ©.00% .. 0.00%
Time (median): 1.215 ms | GC (median): 0.00%
Time (mean * 0): 1.235 ms * 47.159 ps | GC (mean = 0): ©.00% + 0.00%

function vector_add!(C, A, B)
@inbounds for i in eachindex(C, A, B)
C[i] Ali] B[i]

end
F O —— nothing

1.19 ms Histogram: log(frequency) by time 1.42 ms < end

Memory estimate: @ bytes, allocs estimate: @.



Heap Allocations

* When we say “allocations”, we refer to heap allocations
e Allocating memory on the heap is costly
* Memory needs to be cleaned up by the Garbage Collector (GC)

* The GC will interrupt processing to clean up memory — performance
hit!



Preallocating vs Appending

function cumulative sum_preallocated(numbers)
results similar(numbers)

L] T T

total _sum = zero(eltype(numbers)) B
for i in eachindex(numbers) -
total sum numbers[i]
results[i] total_sum

—&— Preallocated
—— Appending

end
return results

end 10-6 |

Time (s)

function cumulative_sum_appending(numbers)
results (eltype(numbers))[1]
total_sum = zero(eltype(numbers))
for i in eachindex(numbers) 107 |
total_sum numbers[i] L | .

push!(results, total_sum) 10? 103
end n
return results
end




Reusing Memory: Caching

* Can pre-allocate storage for the
results

e Still need to allocate the
memory, but only needs to be
done once

* Can make a difference on speed,
but also memory

function example equation_no_cache(x)

end

numerator 5 . x .75 .* sin.(x.72) .
denominator = exp.(-4 .* x) .- x .” 2
y = numerator ./ denominator

return y

20

function example_equation_cache!(y, x)

end

# Set y to the value of the numerator
y .=5 .*%x .75 % sin.(x.72) .+ 20
# Divide out the denominator

y . exp.(-4 .* x) .- x .” 2

return y




Reusing Memory: Avoid Copying

e Slicing an array allocates new
memory for that array

* We can instead create a view
into that data to point at the
same memory

* Changing values in a view will
propagate back to the original
array

e Sometimes copying may be
faster due to memory locality

function nearestneighbour(pointcloud)
# Get the dimension and size of the point cloud
N, D size(pointcloud)
neighbours zeros(Int, N)
# Allocate a new array to store the result
for i in 1:N
point_i =lpointcloud[:, i] I
# Set the CUFTERT WInimam distance to the
# largest possible value, given the type.
min_distance_squared typemax(eltype(pointcloud))
for j in 1:N
point_j pointcloud[:, jl
distance_squared = sum((point_i .- point_j)."2)
if min_distance_squared < distance_squared
min_distance_squared = distance_squared
neighbours[i] j
end
end
end
return neighbours
end




Avoiding the Heap — Stack Allocating

e Can use packages like StaticArrays.jl to create small arrays on the
stack

* Can be used to make the code more readable, and avoiding
allocations

* These are immutable by default

» Useful for small vectors representing positions/velocities etc



Profiling & Reducing
Allocations

Live Demonstration



Workshop — Thursday 26/01/2023

Assignment

Link will be on the website

Tasks:

* Optimise the nearest neighbour algorithm
* Read through the README for assignment details



