
High Performance 
Computing in Julia

from the ground up.

Introduction to Parallel Programming

5/10



Microprocessor Trends – Moore’s Law

Moore’s Law is the observation that the number of transistors 
in a dense integrated circuit doubles almost every two years.



Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


Why do we need parallel programming?

• Processors are not getting faster

• Number of physical processors 
available is growing

• We need to adapt our code to 
work with multiple processors

Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data


What tasks benefit from parallelisation?

No
Speedup

Massive 
Speedup



What tasks benefit from parallelisation?

No
Speedup

Massive 
Speedup

Matrix Multiplication



What tasks benefit from parallelisation?

No
Speedup

Massive 
Speedup

Matrix Multiplication



What tasks benefit from parallelisation?

No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?

Numerical Differential 
Equations

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= ൗ𝐹(𝑥)

𝑚



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?

Numerical Differential 
Equations

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= ൗ𝐹(𝑥)

𝑚



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?

Numerical Differential 
Equations

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= ൗ𝐹(𝑥)

𝑚

Game Simulation



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?

Numerical Differential 
Equations

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= ൗ𝐹(𝑥)

𝑚

Game Simulation



No
Speedup

Massive 
Speedup

Matrix Multiplication

Monte-Carlo
Simulation

What tasks benefit from parallelisation?

Numerical Differential 
Equations

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= ൗ𝐹(𝑥)

𝑚

Game Simulation



Task Dependency Graphs

A (2) C (10)B (2) D (3) E (5) F (2) G (4)

Tasks Processed Sequentially
(Total Time: 28)



Task Dependency Graphs

A (2) C (10)B (2) D (3) E (5) F (2) G (4)

1.B and C depend on A
2.D and E depend on B
3.F depends on C
4.G depends on D, E and F



Task Dependency Graphs

A (2)

C (10)B (2)

D (3) E (5) F (2)

G (4)

1. B and C depend on A
2. D and E depend on B
3. F depends on C
4. G depends on D, E and F



Task Dependency Graphs

A (2)

C (10)B (2)

D (3) E (5) F (2)

G (4)

Critical Path
(Minimum Time: 18)

Maximum Speedup: 
~1.55𝑥

1. B and C depend on A
2. D and E depend on B
3. F depends on C
4. G depends on D, E and F



Amdahl’s Law

We can estimate the speedup of a 
fixed-workload task using Amdahl’s 
Law, which states:

𝑆 𝑠 =
1

1 − 𝑝 +
𝑝
𝑠

• 𝑆 is the speedup of the task

• 𝑠 is the speedup of the parallel 
portion

• 𝑝 is the proportion of time that 
benefits from the improved 
resources of 𝑠.



Gustafson’s Law

• Amdahl’s Law is only concerned with a fixed problem size

• Gustafson realised that we tend to increase the problem size when given more 
resources.

• Take a parallelised algorithm that takes 𝑇𝑝 units of time on a parallel computer 
with 𝑁 processors

• We know that some fraction (1 − 𝑓) is dedicated to serial processing

• If executing on a serial computer, the total time would be
𝑇𝑠 = 1 − 𝑓 𝑇𝑝 + 𝑓𝑁𝑇𝑝

• The speedup of using the parallel computer is

𝑆 =
𝑇𝑆
𝑇𝑝

= 1 − 𝑓 + 𝑓𝑁

• The efficiency of the speedup 𝑒 = Τ𝑆 𝑁 = ൗ(1−𝑓)
𝑁 + 𝑓



Practical Considerations

• Scheduling & synchronising tasks across multiple workers introduces 
some additional latency

• We call this overhead, which means that the problem sizes must be 
large enough to overcome this overhead.

• Amdahl and Gustafson do not take this communication cost into 
account

• The theoretical speedup is only worth using as a guideline, all 
implementations should be benchmarked



Dependency Graph: Map

• Each task is independent of one 
another, e.g:

𝑦𝑖 = 𝑓(𝑥𝑖)

• All elements can be processed in 
parallel

• This is also known as an 
embarrassingly parallel problem

• Execution order is arbitrary

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛⋯

𝑦1 𝑦2 𝑦𝑛−1 𝑦𝑛⋯



Dependency Graph: Reduce

• Elements are reduced to a single 
value by some operator

• Usually deal with binary 
operators (those which take two 
arguments), e.g. +,− etc

• Can parallelise by breaking up 
the reduction into stages and 
using associativity and 
commutativity of the operator

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛⋯

𝑦



Summation

s = 0

for i in 1:8

s += i

end

• Use of the single variable causes 
a long critical path. 

• The next addition requires the 
previous addition to finish

• But addition is associative



Parallel Summation

𝑥1 𝑥2 𝑥5 𝑥8𝑥3 𝑥4 𝑥6 𝑥7



Parallel Summation

𝑥1 𝑥2 𝑥5 𝑥8

𝑥1+ 𝑥2

𝑥3 𝑥4 𝑥6 𝑥7

𝑥3+ 𝑥4 𝑥5+ 𝑥6 𝑥7+ 𝑥8



Parallel Summation

𝑥1 𝑥2 𝑥5 𝑥8

𝑥1+ 𝑥2

𝑥3 𝑥4 𝑥6 𝑥7

𝑥3+ 𝑥4 𝑥5+ 𝑥6 𝑥7+ 𝑥8

෍

𝑖=1

4

𝑥𝑖 ෍

𝑖=5

8

𝑥𝑖



Parallel Summation

𝑥1 𝑥2 𝑥5 𝑥8

𝑥1+ 𝑥2

𝑥3 𝑥4 𝑥6 𝑥7

𝑥3+ 𝑥4 𝑥5+ 𝑥6 𝑥7+ 𝑥8

෍

𝑖=1

4

𝑥𝑖 ෍

𝑖=5

8

𝑥𝑖

෍

𝑖=1

8

𝑥𝑖



Parallel Mechanisms

Map

• Easy to parallelise as each 
operation is independent of the 
last

• Operations can be done in any 
order

• May require some load 
balancing 

• Scheduling the work introduces 
some overhead

Reduction

• Order of operations depends on 
associativity of the operator

• Often requires additional 
memory to store intermediate 
results

• Scheduling introduces overhead



Monte-Carlo Simulation (Estimating 𝜋)

• Throw darts uniformly randomly 
in a square box, with a circular 
board.

• If dart goes inside the green it is 
a hit, otherwise a miss

• Estimate 𝜋 via

𝜋 ≈ 4
𝑛𝑐
𝑛



Monte-Carlo Simulation (Estimating 𝜋)



Monte-Carlo Simulation (Estimating 𝜋)

Sample 𝑟2 Sample 𝑟2 Sample 𝑟2 Sample 𝑟2⋯

Sum all 𝑟2 < 1

Output 4
𝑛𝑐

𝑛

𝑛



Live Demonstration



Monte-Carlo Simulation (Estimating 𝜋)

• Can use @threads to perform 
each element of the loop in 
parallel (using multiple cores)

• However, this introduces a bug, 
which makes the result under-
estimate 𝜋

• This type of bug is called a race 
condition.



Monte-Carlo Simulation (Estimating 𝜋)



Workshop – Thursday 02/02/2023

Assignment: Multithreading

Released Wednesday 01/02/2023 

Bring your laptops!


	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2: Microprocessor Trends – Moore’s Law
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Why do we need parallel programming?
	Slide 12: What tasks benefit from parallelisation?
	Slide 13: What tasks benefit from parallelisation?
	Slide 14: What tasks benefit from parallelisation?
	Slide 15: What tasks benefit from parallelisation?
	Slide 16: What tasks benefit from parallelisation?
	Slide 17: What tasks benefit from parallelisation?
	Slide 18: What tasks benefit from parallelisation?
	Slide 19: What tasks benefit from parallelisation?
	Slide 20: What tasks benefit from parallelisation?
	Slide 21: What tasks benefit from parallelisation?
	Slide 22: Task Dependency Graphs
	Slide 23: Task Dependency Graphs
	Slide 24: Task Dependency Graphs
	Slide 25: Task Dependency Graphs
	Slide 26: Amdahl’s Law
	Slide 27: Gustafson’s Law
	Slide 28: Practical Considerations
	Slide 29: Dependency Graph: Map
	Slide 30: Dependency Graph: Reduce
	Slide 31: Summation
	Slide 32: Parallel Summation
	Slide 33: Parallel Summation
	Slide 34: Parallel Summation
	Slide 35: Parallel Summation
	Slide 36: Parallel Mechanisms
	Slide 37: Monte-Carlo Simulation (Estimating pi)
	Slide 38: Monte-Carlo Simulation (Estimating pi)
	Slide 39: Monte-Carlo Simulation (Estimating pi)
	Slide 40: Live Demonstration
	Slide 41: Monte-Carlo Simulation (Estimating pi)
	Slide 42: Monte-Carlo Simulation (Estimating pi)
	Slide 43: Workshop – Thursday 02/02/2023

