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Microprocessor Trends – Moore’s Law

Moore’s Law is the observation that the number of transistors 
in a dense integrated circuit doubles almost every two years.
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Why do we need parallel programming?

• Processors are not getting faster

• Number of physical processors 
available is growing

• We need to adapt our code to 
work with multiple processors

Karl Rupp - https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data
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Task Dependency Graphs

A (2) C (10)B (2) D (3) E (5) F (2) G (4)

Tasks Processed Sequentially
(Total Time: 28)
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Task Dependency Graphs

A (2)

C (10)B (2)

D (3) E (5) F (2)

G (4)

Critical Path
(Minimum Time: 18)

Maximum Speedup: 
~1.55𝑥

1. B and C depend on A
2. D and E depend on B
3. F depends on C
4. G depends on D, E and F



Amdahl’s Law

We can estimate the speedup of a 
fixed-workload task using Amdahl’s 
Law, which states:

𝑆 𝑠 =
1

1 − 𝑝 +
𝑝
𝑠

• 𝑆 is the speedup of the task

• 𝑠 is the speedup of the parallel 
portion

• 𝑝 is the proportion of time that 
benefits from the improved 
resources of 𝑠.



Gustafson’s Law

• Amdahl’s Law is only concerned with a fixed problem size

• Gustafson realised that we tend to increase the problem size when given more 
resources.

• Take a parallelised algorithm that takes 𝑇𝑝 units of time on a parallel computer 
with 𝑁 processors

• We know that some fraction (1 − 𝑓) is dedicated to serial processing

• If executing on a serial computer, the total time would be
𝑇𝑠 = 1 − 𝑓 𝑇𝑝 + 𝑓𝑁𝑇𝑝

• The speedup of using the parallel computer is

𝑆 =
𝑇𝑆
𝑇𝑝

= 1 − 𝑓 + 𝑓𝑁

• The efficiency of the speedup 𝑒 = Τ𝑆 𝑁 = ൗ(1−𝑓)
𝑁 + 𝑓



Practical Considerations

• Scheduling & synchronising tasks across multiple workers introduces 
some additional latency

• We call this overhead, which means that the problem sizes must be 
large enough to overcome this overhead.

• Amdahl and Gustafson do not take this communication cost into 
account

• The theoretical speedup is only worth using as a guideline, all 
implementations should be benchmarked



Dependency Graph: Map

• Each task is independent of one 
another, e.g:

𝑦𝑖 = 𝑓(𝑥𝑖)

• All elements can be processed in 
parallel

• This is also known as an 
embarrassingly parallel problem

• Execution order is arbitrary

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛⋯

𝑦1 𝑦2 𝑦𝑛−1 𝑦𝑛⋯



Dependency Graph: Reduce

• Elements are reduced to a single 
value by some operator

• Usually deal with binary 
operators (those which take two 
arguments), e.g. +,− etc

• Can parallelise by breaking up 
the reduction into stages and 
using associativity and 
commutativity of the operator

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛⋯

𝑦



Summation

s = 0

for i in 1:8

s += i

end

• Use of the single variable causes 
a long critical path. 

• The next addition requires the 
previous addition to finish

• But addition is associative



Parallel Summation

𝑥1 𝑥2 𝑥5 𝑥8𝑥3 𝑥4 𝑥6 𝑥7
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Parallel Mechanisms

Map

• Easy to parallelise as each 
operation is independent of the 
last

• Operations can be done in any 
order

• May require some load 
balancing 

• Scheduling the work introduces 
some overhead

Reduction

• Order of operations depends on 
associativity of the operator

• Often requires additional 
memory to store intermediate 
results

• Scheduling introduces overhead



Monte-Carlo Simulation (Estimating 𝜋)

• Throw darts uniformly randomly 
in a square box, with a circular 
board.

• If dart goes inside the green it is 
a hit, otherwise a miss

• Estimate 𝜋 via

𝜋 ≈ 4
𝑛𝑐
𝑛



Monte-Carlo Simulation (Estimating 𝜋)



Monte-Carlo Simulation (Estimating 𝜋)

Sample 𝑟2 Sample 𝑟2 Sample 𝑟2 Sample 𝑟2⋯

Sum all 𝑟2 < 1

Output 4
𝑛𝑐

𝑛

𝑛



Live Demonstration



Monte-Carlo Simulation (Estimating 𝜋)

• Can use @threads to perform 
each element of the loop in 
parallel (using multiple cores)

• However, this introduces a bug, 
which makes the result under-
estimate 𝜋

• This type of bug is called a race 
condition.



Monte-Carlo Simulation (Estimating 𝜋)



Workshop – Thursday 02/02/2023

Assignment: Multithreading

Released Wednesday 01/02/2023 

Bring your laptops!
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