
High Performance
Computing in Julia

from the ground up.

Multithreading

6/10

Multithreading

• Each process can spin up multiple threads to enable concurrent
processing

• Each thread has access to all the shared memory in a process

• Very cheap to spin up new threads (as opposed to starting a new
process)

• If there are multiple cores available, each thread can be executed on a
different core in parallel

• Shared memory introduces new challenges, namely race conditions
which need to be addressed by atomics, mutexes, semaphores or
algorithm re-design.

Race Conditions

• If two threads are trying to write & read from the same block of
memory at the same time.

• Race conditions usually do not cause the program to crash, but often
just produce the wrong results

• Typical examples:
• Mutating an array or variable (i.e. a counter)

• Appending to an array

• Random number generation

• Functions/Operations that avoid race conditions are known as
thread-safe

Mitigating Race Conditions
Atomics

Atomics

• Atomic operations are designed to be indivisible so that you can
guarantee that the operations will happen sequentially

Atomics

Race Condition
using Base.Threads

function my_sum(numbers::Vector{Int})

s = 0

@threads for n in numbers

s += n

end

return s

end

Thread-Safe (with Atomics)

function my_sum(numbers::Vector{Int})

s = Atomic{Int}(0)

@threads for n in numbers

atomic_add!(s, n)

end

return s[]

end

Atomics

Advantages

• Fixes the race conditions

• Guarantees thread-safety if used
correctly

• Can be used as part of the
solution

Disadvantages

• Atomic operations are much
slower than non-atomic
counterparts

• Causes threads to sleep while
waiting to write

• Can cause a higher slowdown
with more threads

• Usually means that algorithm is
badly designed

Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)

julia> @btime my_sum_chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})

s = Atomic{Int}(0)

block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end

25x

Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)

julia> @btime my_sum_chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})

s = Atomic{Int}(0)

block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end

3x

Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)

julia> @btime my_sum_chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})

s = Atomic{Int}(0)

block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end

Mitigating Race Conditions
Mutexes and Semaphores

Mutexes vs Semaphores

Mutexes

• A mutex provides mutual
exclusion, which means that
only one worker can access a
resource at any one time

• Can be implemented as a “lock”
where it can be either unlocked
or locked.

Semaphores

• A semaphore generalises the
mutex

• Instead of one resource, this
provides a “pool” of resources

• E.g. a pool of memory buffers

• Resources can be added back
into the pool when usage is not
required

Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end

Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end

The lock is a standalone variable

Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end

• The lock function attempts to acquire the
mutex

• When acquired it will execute the code in
the “do” block

• When finished executing, the thread
relinquishes the lock so it can be acquired
by another thread

• Threads will automatically wait to acquire a
lock

Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Create a pool of resources to use with
a maximum capacity of 4

Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Acquire one of the resources from the pool

Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Put it back in the pool when finished

Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Combine the resources
together and close the pool

Mitigating Race Conditions
Separate Memory Per Thread

Separate Memory Per Thread

Separate Memory Per Thread

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Separate Memory Per Thread

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Separate Memory Per Thread

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Threaded Performance (separate memory)

Threaded Performance (separate memory)

Threaded Performance (separate memory)

Overhead

Threaded Performance (separate memory)

Bottleneck

False Sharing

• False sharing is a performance degrading bug, which can occur in shared-
memory multithreading code

• The CPU cache collects contiguous chunks of memory called cache lines

• As elements of an array are stored contiguously (i.e. next to each other),
adjacent elements are usually sharing a cache line

• Each CPU core has its own L1 cache, which stores the cache line

• If one CPU core modifies the cache line, it is invalidated across all CPU
caches

• This will force a reload of the cache from memory despite it not being
logically required

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Spacing of 2

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Spacing of 3

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Cache line
is ~256
bits long

Monte-Carlo Simulation (Estimating 𝜋)

Partition workload
into chunks for

each thread

Monte-Carlo Simulation (Estimating 𝜋)

Each chunk
reduces its
own result

Monte-Carlo Simulation (Estimating 𝜋)

Final
reduction
occurs in

constant time

Monte-Carlo Simulation (Estimating 𝜋)

function is_dart_hit()

x = rand() * 2 - 1

y = rand() * 2 - 1

return (x^2 + y^2 <= 1)

end

function est_pi_mc_threaded_chunked(n)

n_total = Atomic{Int}()

block_size = cld(n, nthreads())

@threads for t in 1:nthreads()

n_c = mapreduce(x->is_dart_hit(), +, 1:block_size)

atomic_add!(n_total, n_c)

end

return 4 * n_total[] / n

end

Monte-Carlo Simulation (Estimating 𝜋)

Monte-Carlo Simulation (Estimating 𝜋)

Workshop

Assignment Link:

https://classroom.github.com/a/HqKUZUwc

Task:

Q1) Fix a race condition

Q2) Create a DAG for the dependices of a calculation and
parallelise it with “Threads.@spawn” and “fetch”

Q3) Parallelise the N-body force calculation

https://classroom.github.com/a/HqKUZUwc

	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2: Multithreading
	Slide 3: Race Conditions
	Slide 4: Mitigating Race Conditions
	Slide 5: Atomics
	Slide 6: Atomics
	Slide 7: Atomics
	Slide 8: Atomics
	Slide 9: Atomics
	Slide 10: Atomics
	Slide 11: Mitigating Race Conditions
	Slide 12: Mutexes vs Semaphores
	Slide 13: Mutexes in Julia
	Slide 14: Mutexes in Julia
	Slide 15: Mutexes in Julia
	Slide 16: Semaphores in Julia
	Slide 17: Semaphores in Julia
	Slide 18: Semaphores in Julia
	Slide 19: Semaphores in Julia
	Slide 20: Semaphores in Julia
	Slide 21: Mitigating Race Conditions
	Slide 22: Separate Memory Per Thread
	Slide 23: Separate Memory Per Thread
	Slide 24: Separate Memory Per Thread
	Slide 25: Separate Memory Per Thread
	Slide 26: Threaded Performance (separate memory)
	Slide 27: Threaded Performance (separate memory)
	Slide 28: Threaded Performance (separate memory)
	Slide 29: Threaded Performance (separate memory)
	Slide 30: False Sharing
	Slide 31: False Sharing Experiment
	Slide 32: False Sharing Experiment
	Slide 33: False Sharing Experiment
	Slide 34: False Sharing Experiment
	Slide 35: False Sharing Experiment
	Slide 36: False Sharing Experiment
	Slide 37: False Sharing Experiment
	Slide 38: Monte-Carlo Simulation (Estimating pi)
	Slide 39: Monte-Carlo Simulation (Estimating pi)
	Slide 40: Monte-Carlo Simulation (Estimating pi)
	Slide 41: Monte-Carlo Simulation (Estimating pi)
	Slide 42: Monte-Carlo Simulation (Estimating pi)
	Slide 43: Monte-Carlo Simulation (Estimating pi)
	Slide 44: Workshop

