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Multithreading

• Each process can spin up multiple threads to enable concurrent 
processing

• Each thread has access to all the shared memory in a process

• Very cheap to spin up new threads (as opposed to starting a new 
process)

• If there are multiple cores available, each thread can be executed on a 
different core in parallel

• Shared memory introduces new challenges, namely race conditions
which need to be addressed by atomics, mutexes, semaphores or 
algorithm re-design.



Race Conditions

• If two threads are trying to write & read from the same block of 
memory at the same time.

• Race conditions usually do not cause the program to crash, but often 
just produce the wrong results

• Typical examples:
• Mutating an array or variable (i.e. a counter)

• Appending to an array

• Random number generation

• Functions/Operations that avoid race conditions are known as 
thread-safe



Mitigating Race Conditions
Atomics



Atomics

• Atomic operations are designed to be indivisible so that you can 
guarantee that the operations will happen sequentially



Atomics

Race Condition
using Base.Threads

function my_sum(numbers::Vector{Int})

s = 0

@threads for n in numbers

s += n

end

return s

end

Thread-Safe (with Atomics)

function my_sum(numbers::Vector{Int})

s = Atomic{Int}(0)

@threads for n in numbers

atomic_add!(s, n)

end

return s[]

end



Atomics

Advantages

• Fixes the race conditions

• Guarantees thread-safety if used 
correctly

• Can be used as part of the 
solution

Disadvantages

• Atomic operations are much 
slower than non-atomic 
counterparts

• Causes threads to sleep while 
waiting to write

• Can cause a higher slowdown 
with more threads

• Usually means that algorithm is 
badly designed



Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)

julia> @btime my_sum_chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})

s = Atomic{Int}(0)

block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end

25x



Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)
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Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})
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block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end

3x



Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: 0 bytes)

julia> @btime my_sum($numbers)

1.144 s (26 allocations: 2.64 KiB)
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Performant Version (Chunked)
import Base.Iterators: partition

function my_sum_chunked(numbers::Vector{Int})

s = Atomic{Int}(0)

block_size = cld(length(numbers), nthreads())

iter = collect(partition(numbers, block_size))

@threads for nums in iter

atomic_add!(s, sum(nums))

end

return s[]

end



Mitigating Race Conditions
Mutexes and Semaphores



Mutexes vs Semaphores

Mutexes

• A mutex provides mutual 
exclusion, which means that 
only one worker can access a 
resource at any one time

• Can be implemented as a “lock” 
where it can be either unlocked 
or locked.

Semaphores

• A semaphore generalises the 
mutex

• Instead of one resource, this 
provides a “pool” of resources

• E.g. a pool of memory buffers

• Resources can be added back 
into the pool when usage is not 
required



Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end



Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end

The lock is a standalone variable



Mutexes in Julia

• We use the ReentrantLock() to act as a mutex

function my_sum_mutex(numbers::Vector{Int})

s = 0

lk = ReentrantLock()

@threads for n in numbers

lock(lk) do

s += n

end

end

return s

end

• The lock function attempts to acquire the 
mutex

• When acquired it will execute the code in 
the “do” block

• When finished executing, the thread 
relinquishes the lock so it can be acquired 
by another thread

• Threads will automatically wait to acquire a 
lock



Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end



Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Create a pool of resources to use with 
a maximum capacity of 4



Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Acquire one of the resources from the pool



Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Put it back in the pool when finished



Semaphores in Julia

• We can use a Channel() to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})

num_buffers = 4

pool = Channel{Int}(num_buffers)

for i in 1:num_buffers

put!(pool, 0)

end

@threads for n in numbers

s = take!(pool)

s += n

put!(pool, s)

end

s = 0

for i in 1:num_buffers

s += take!(pool)

end

close(pool)

return s

end

Combine the resources 
together and close the pool



Mitigating Race Conditions
Separate Memory Per Thread



Separate Memory Per Thread



Separate Memory Per Thread
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Threaded Performance (separate memory)



Threaded Performance (separate memory)



Threaded Performance (separate memory)

Overhead



Threaded Performance (separate memory)

Bottleneck



False Sharing

• False sharing is a performance degrading bug, which can occur in shared-
memory multithreading code

• The CPU cache collects contiguous chunks of memory called cache lines

• As elements of an array are stored contiguously (i.e. next to each other), 
adjacent elements are usually sharing a cache line

• Each CPU core has its own L1 cache, which stores the cache line

• If one CPU core modifies the cache line, it is invalidated across all CPU 
caches

• This will force a reload of the cache from memory despite it not being 
logically required



False Sharing Experiment
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False Sharing Experiment
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False Sharing Experiment
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False Sharing Experiment
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False Sharing Experiment
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Spacing of 3



False Sharing Experiment
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False Sharing Experiment

1 2 3 4

Thread 3 Thread 4Thread 1 Thread 2

Cache line 
is ~256
bits long



Monte-Carlo Simulation (Estimating 𝜋)

Partition workload 
into chunks for 

each thread



Monte-Carlo Simulation (Estimating 𝜋)

Each chunk 
reduces its 
own result



Monte-Carlo Simulation (Estimating 𝜋)

Final 
reduction 
occurs in 

constant time



Monte-Carlo Simulation (Estimating 𝜋)

function is_dart_hit()

x = rand() * 2 - 1

y = rand() * 2 - 1

return (x^2 + y^2 <= 1)

end

function est_pi_mc_threaded_chunked(n)

n_total = Atomic{Int}()

block_size = cld(n, nthreads())

@threads for t in 1:nthreads()

n_c = mapreduce(x->is_dart_hit(), +, 1:block_size)

atomic_add!(n_total, n_c)

end

return 4 * n_total[] / n

end



Monte-Carlo Simulation (Estimating 𝜋)



Monte-Carlo Simulation (Estimating 𝜋)



Workshop

Assignment Link:

https://classroom.github.com/a/HqKUZUwc

Task:

Q1) Fix a race condition

Q2) Create a DAG for the dependices of a calculation and 
parallelise it with “Threads.@spawn” and “fetch”

Q3) Parallelise the N-body force calculation

https://classroom.github.com/a/HqKUZUwc
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