High Performance

Computing in Julia
from the ground up.

Multithreading

6/10

Multithreading

e Each process can spin up multiple threads to enable concurrent
processing

* Each thread has access to all the shared memory in a process

* \Very cheap to spin up new threads (as opposed to starting a new
process)

* If there are multiple cores available, each thread can be executed on a
different core in parallel

e Shared memory introduces new challenges, namely race conditions
which need to be addressed by atomics, mutexes, semaphores or
algorithm re-design.

Race Conditions

* If two threads are trying to write & read from the same block of
memory at the same time.

* Race conditions usually do not cause the program to crash, but often
just produce the wrong results

* Typical examples:
* Mutating an array or variable (i.e. a counter)
* Appending to an array
* Random number generation

* Functions/Operations that avoid race conditions are known as
thread-safe

Mitigating Race Conditions

Atomics

Atomics

e Atomic operations are designed to be indivisible so that you can
guarantee that the operations will happen sequentially

Atomics

Race Condition

using Base.Threads

function my sum(numbers::Vector{Int})

end

s =0
@threads

S +=
end

return s

for n in numbers

n

Thread-Safe (with Atomics)

function my sum(numbers::Vector{Int})
s = Atomic{Int}(0)
@threads for n in numbers
atomic_add!(s, n)
end
return s[]

end

Atomics

Advantages Disadvantages

* Fixes the race conditions * Atomic operations are much

- Guarantees thread-safety if used ~ Slower than non-atomic
correctly counterparts

- Can be used as part of the * Causes threads to sleep while
solution waiting to write

e Can cause a higher slowdown
with more threads

e Usually means that algorithm is
badly designed

Atomics

Benchmarks

julia> @btime sum($numbers)
46.328 ms (0 allocations: O bytes)
25x(julia> @btime my sum($numbers)
1.144 s (26 allocations: 2.64 KiB)
julia> @btime my sum chunked($numbers)
14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)

import Base.Iterators: partition

function my sum chunked(numbers::Vector{Int})

end

s = Atomic{Int}(9)
block_size = cld(length(numbers), nthreads())
iter = collect(partition(numbers, block size))
@threads for nums in iter

atomic_add! (s, sum(nums))
end

return s[]

3X

Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: O bytes)
julia> @btime my sum($numbers)

1.144 s (26 allocations: 2.64 KiB)
julia> @btime my sum chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)

import Base.Iterators: partition

function my sum chunked(numbers::Vector{Int})

end

s = Atomic{Int}(9)
block_size = cld(length(numbers), nthreads())
iter = collect(partition(numbers, block size))
@threads for nums in iter

atomic_add! (s, sum(nums))
end

return s[]

Atomics

Benchmarks

julia> @btime sum($numbers)

46.328 ms (0 allocations: O bytes)
julia> @btime my sum($numbers)

1.144 s (26 allocations: 2.64 KiB)
julia> @btime my sum chunked($numbers)

14.982 ms (27 allocations: 2.86 KiB)

Performant Version (Chunked)

import Base.Iterators: partition

function my sum chunked(numbers::Vector{Int})

end

s = Atomic{Int}(9)
block_size = cld(length(numbers), nthreads())
iter = collect(partition(numbers, block size))
@threads for nums in iter

atomic_add! (s, sum(nums))
end

return s[]

Mitigating Race Conditions

Mutexes and Semaphores

Mutexes vs Semaphores

Mutexes Semaphores
* A mutex provides mutual * A semaphore generalises the
exclusion, which means that mutex

only one worker can access a

: * Instead of one resource, this
resource at any one time

provides a “pool” of resources
* Can be implemented as a “lock”

where it can be either unlocked
or locked. e Resources can be added back

into the pool when usage is not
required

* E.g. a pool of memory buffers

Mutexes in Julia

* We use the ReentrantLock() to act as a mutex

function my sum mutex(numbers::Vector{Int})
s =0
1k = ReentrantLock()
@threads for n in numbers
lock(1lk) do
S +=n
end
end
return s
end

Mutexes in Julia

* We use the ReentrantLock() to act as a mutex

function my sum mutex(numbers::Vector{Int})

rlk ReentrantLock() 1 The lock is a standalone variable

@threads for n in numbers
lock(1lk) do
S +=n
end
end
return s
end

Mutexes in Julia

* We use the ReentrantLock() to act as a mutex

function my sum mutex(numbers::Vector{Int})

s =0
1k = ReentrantLock() The lock function attempts to acquire the
@threads for n_in numbers — mwex e
7 ock(1k N . en acquired it will execute the code in
 fock(lk) do the “do” block
: > =1 : When finished executing, the thread
"\end ; relinquishes the lock so it can be acquired
end — 77 by another thread
return s * Threads will automatically wait to acquire a

end lock

Semaphores in Julia

* We can use a Channel () to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})
num_buffers = 4
pool = Channel{Int}(num_buffers)
for i in 1:num_buffers
put!(pool, ©)
end
@threads for n in numbers
s = take!(pool)
S +=n
put!(pool, s)
end
s =20
for i in 1:num_buffers
s += take!(pool)
end
close(pool)
return s

end

Semaphores in Julia

* We can use a Channel () to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})
-------------~

’
f num_buffers = 4 \

| _ .

| Z°°1_-'C“j?”el{i”:““m—b“**e"s’ | Create a pool of resources to use with
L bt oo, I @ maximum capacity of 4

\ end l

~-------------’
@threads for n in numbers

s = take!(pool)
S +=n
put!(pool, s)
end
s =20
for i in 1:num_buffers
s += take!(pool)
end
close(pool)
return s

end

Semaphores in Julia

* We can use a Channel () to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})
num_buffers = 4
pool = Channel{Int}(num_buffers)
for i in 1:num_buffers
put!(pool, ©)

end

Acquire one of the resources from the pool

put!(pool, s)

end

s =20

for i in 1:num_buffers
s += take!(pool)

end

close(pool)

return s

end

Semaphores in Julia

* We can use a Channel () to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})
num_buffers = 4
pool = Channel{Int}(num_buffers)
for i in 1:num_buffers
put!(pool, ©)
end
@threads for n in numbers

s = take!(pool)

reeeoo 91 Put it back in the pool when finished

for i in 1:num_buffers
s += take!(pool)

end

close(pool)

return s

end

Semaphores in Julia

* We can use a Channel () to act as a semaphore, which can be buffered or unbuffered.

function my_sum_channel(numbers::Vector{Int})
num_buffers = 4
pool = Channel{Int}(num_buffers)
for i in 1:num_buffers
put!(pool, ©)
end
@threads for n in numbers
s = take!(pool)
S +=n

put!(pool, s)

end
(S-e)
| for i in i::‘“m;b”*:j"s | Combine the resources
i s += take!(poo |
lend I together and close the pool
o) g

return s

end

Mitigating Race Conditions

Separate Memory Per Thread

Separate Memory Per

hread

function est _pi mc_threaded(n)
h_¢cs = zeros(typeof(n), Threads.nthreads())
Threads.@threads for _ in 1:n

end

end
n_c

Choose random numbers between -1 and +1 for x and y
X = rand() * 2 - 1
y = rand() * 2 - 1
Work out the distance from origin using Pythagoras
r2 = X*x+yty
Count point if it is inside the circle (r"2=1)
ifr2 <=1

n_cs[Threads.threadid()] += 1
end

= sum(n_cs)

return 4 * n.c / n

Separate Memory Per Thread

_ 3 - En-_?s-; zeros(typeof(n), Threads nthreads()]

Thread 1 Thread 2 Thread 4 # Choose randoir numbers between -1 and +1 for x and y
X = rand() * 2 - 1
y = rand() * 2 - 1
Work out the distance from origin using Pythagoras
r2 = X*x+yty
Count point if it is inside the circle (r"2=1)
ifr2 <=1
n_cs[Threads.threadid()] += 1

end

end

n_c = sum(n_cs)

return 4 * n.c / n

end

Separate Memory Per

Thread 1 Thread 2

Thread 4

hread

function est _pi mc_threaded(n)
n_cs = zeros(typeof(n), Threads.nthreads())
Threads.@threads for _ in 1:n

end
n_c

Choose random numbers between -1 and +1 for x and y
X = rand() * 2 - 1

y = rand() * 2 - 1

Work out the distance from origin using Pythagoras
r2 = X*x+yty

Count point if it is inside the circle (r"2=1)

if r2 <=1

------------------\

fh cs[Threads.threadid()] += 1

end

= sum(n_cs)

return 4 * n.c / n

end

Separate Memory Per

Thread 1 Thread 2

Thread 4

hread

function est _pi mc_threaded(n)
h_cs = zeros(typeof(n), Threads.nthreads())
Threads.@threads for _ in 1:n

end
n_c

Choose random numbers between -1 and +1 for x and y
X = rand() * 2 - 1
y = rand() * 2 - 1
Work out the distance from origin using Pythagoras
r2 = X*x+yty
Count point if it is inside the circle (r"2=1)
ifr2 <=1

n_cs[Threads.threadid()] += 1
end

= sum(n_cs)

return 4 * n.c / n

end

Threaded Performance (separate memory)

6 F ————————

Speedup

— — — Amdahl Max
@ - Serial

Threaded Performance (separate memory)

1 T ARSI NSNS SRR WD U N ——
4
—— — @
o
=R o ———— @ — ——— o — ——— - ——-—- -0
o
Q
Q
o
o
4
1
16
— — — Amdahl Max
— @ -- Serial
—Q— Threaded
61_4 2 4 | I7 I
10 10° 10 10° 10° 10 108

Threaded Performance (separate memory)

16 F — — — —
4
—— — @
o
=R o ———— @ — ——— o — ——— - ——-—- -0
o
3 head
L Overhea
o
4
1
16
— — — Amdahl Max
— @ -- Serial
—Q— Threaded
61_4 2 4 | I7 I
10 10° 10 10° 10° 10 108

Threaded Performance (separate memory)

Speedup

16

I Bottleneck
—— \ N

— — — Amdahl Max
— @ -- Serial
—Q— Threaded

1

False Sharing

 False sharing is a performance degrading bug, which can occur in shared-
memory multithreading code

* The CPU cache collects contiguous chunks of memory called cache lines

* As elements of an array are stored contiguously (i.e. next to each other),
adjacent elements are usually sharing a cache line

e Each CPU core has its own L1 cache, which stores the cache line

* |[f one CPU core modifies the cache line, it is invalidated across all CPU
caches

* This will force a reload of the cache from memory despite it not being
logically required

False Sharing Experiment

IE o R

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded(n)
n_cs = zeros(typeof(n), Threads.nthreads())

Threads.@threads for _ in 1:n
Choose random numbers between -1 and +1 for x and y
X =rand() * 2 - 1
y = rand() * 2 - 1
Work out the distance from origin using Pythagoras
r2 = xtx+yty
Count point if it is inside the circle (r*~2=1)
if r2 <=1

n_cs[Threads.threadid()] += 1

end

end

n_c = sum(n_cs)

return 4 * n.c / n

end

False Sharing Experiment

IE o R

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)
n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
Threads.@threads for _ in 1:n
X = rand() * 2 - 1
y =rand() * 2 - 1
r2 = x*x+y*y
if r2 <=1
n_cs[Threads.threadid()*spacing] += 1

end

end

n_c = sum(n_cs)

return 4 * n_c / n

end

False Sharing Experiment

| [« R s 4]

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)
n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
Threads.@threads for _ in 1:n
X = rand() * 2 - 1
y =rand() * 2 - 1
r2 = x*x+y*y
if r2 <=1
n_cs[Threads.threadid()*spacing] += 1

end

end

n_c = sum(n_cs)

return 4 * n_c / n

end

False Sharing Experiment

Spacing of 2

—
L [P [[4]

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)
n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
Threads.@threads for _ in 1:n
X = rand() * 2 - 1
y =rand() * 2 - 1
r2 = x*x+y*y
if r2 <=1
n_cs[Threads.threadid()*spacing] += 1

end

end

n_c = sum(n_cs)

return 4 * n_c / n

end

False Sharing Experiment

Spacing of 3

—
NN 3| [[4]

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)

n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
Threads.@threads for _ in 1:n
X = rand() * 2 - 1
y =rand() * 2 - 1
r2 = x*x+y*y
if r2 <=1
n_cs[Threads.threadid()*spacing] += 1
end
end
n_c = sum(n_cs)
return 4 * n.c / n
end

False Sharing Experiment

LT [=] [[e]

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)
n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
104 Threads.@threads for _ in 1:n
2 — X =rand() * 2 - 1
® y = rand() * 2 - 1
r2 = x*x+y*y
if r2 <=1
@ L5 N n_cs[Threads.threadid()*spacing] += 1
) end
é ¢ end
= 1} e -] n_c = sum(n_cs)
return 4 * n.c / n
®0cccee i
| |

False Sharing Experiment

LT [=] [[e]

Thread 1 Thread 2 Thread 4 function est_pi_mc_threaded_spaced(n, spacing=1)
n_cs = zeros(typeof(n), Threads.nthreads()*spacing)
_10_4 Threads.@threads for _ in 1:n
2 ‘ — X = rand() * 2 - 1
@ y =rand() * 2 - 1
1 r2 = x*x+y*y
Cache line e
= 1o is ~256 | n_cs[Threads.threadid()*spacing] += 1
) end
£ ® bits long end
— 1} e . n_c = sum(n_cs)
return 4 * n.c / n
-------- 1 ‘.‘-.-. 'l? end
5 10

Monte-Carlo Simulation (Estimating m)

/

Partition workload
into chunks for
each thread

Monte-Carlo Simulation (Estimating m)

\ Each chunk

reduces its
own result

Monte-Carlo Simulation (Estimating m)

Final
\ reduction
occurs in
constant time

Monte-Carlo Simulation (Estimating m)

function is dart hit()
X = rand() * 2 - 1
y = rand() * 2 - 1
return (x"2 + y*2 <= 1)

end
function est pi mc_threaded chunked(n)
n_total = Atomic{Int}()
block size = cld(n, nthreads())
@threads for t in 1:nthreads()
n_c = mapreduce(x->is dart hit(), +, 1l:block size)

atomic add!(n_total, n _c)
end
return 4 * n_total[] / n
end

Monte-Carlo Simulation (Estimating m)

10!
109
35
-1
10 - ®- Serial
—m#— Threaded Chunked
- - - Amdahl Max

102 10° 10* 10° 10° 107 108
n

Monte-Carlo Simulation (Estimating m)

$r————T""""@ """~ 1" """~ ["~~~ 71— 101
4
-g- ! 10°
o n
0
o
v
4
-1
£t 10 - ®- Serial
6
"o smdahl Max —&— Threaded Chunked
) —<&— Threaded - - - Amdahl Max
M 1 1 1
2 3 4 5 6 7 8
1 10 1o 10 10 10 1o 102 100 10+ 105 105 107 108

n
n

Workshop

Assignment Link:
https://classroom.github.com/a/HgKUZUwc

Task:
Q1) Fix a race condition

Q2) Create a DAG for the dependices of a calculation and
parallelise it with “ ” and “ ”

Q3) Parallelise the N-body force calculation

https://classroom.github.com/a/HqKUZUwc

	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2: Multithreading
	Slide 3: Race Conditions
	Slide 4: Mitigating Race Conditions
	Slide 5: Atomics
	Slide 6: Atomics
	Slide 7: Atomics
	Slide 8: Atomics
	Slide 9: Atomics
	Slide 10: Atomics
	Slide 11: Mitigating Race Conditions
	Slide 12: Mutexes vs Semaphores
	Slide 13: Mutexes in Julia
	Slide 14: Mutexes in Julia
	Slide 15: Mutexes in Julia
	Slide 16: Semaphores in Julia
	Slide 17: Semaphores in Julia
	Slide 18: Semaphores in Julia
	Slide 19: Semaphores in Julia
	Slide 20: Semaphores in Julia
	Slide 21: Mitigating Race Conditions
	Slide 22: Separate Memory Per Thread
	Slide 23: Separate Memory Per Thread
	Slide 24: Separate Memory Per Thread
	Slide 25: Separate Memory Per Thread
	Slide 26: Threaded Performance (separate memory)
	Slide 27: Threaded Performance (separate memory)
	Slide 28: Threaded Performance (separate memory)
	Slide 29: Threaded Performance (separate memory)
	Slide 30: False Sharing
	Slide 31: False Sharing Experiment
	Slide 32: False Sharing Experiment
	Slide 33: False Sharing Experiment
	Slide 34: False Sharing Experiment
	Slide 35: False Sharing Experiment
	Slide 36: False Sharing Experiment
	Slide 37: False Sharing Experiment
	Slide 38: Monte-Carlo Simulation (Estimating pi)
	Slide 39: Monte-Carlo Simulation (Estimating pi)
	Slide 40: Monte-Carlo Simulation (Estimating pi)
	Slide 41: Monte-Carlo Simulation (Estimating pi)
	Slide 42: Monte-Carlo Simulation (Estimating pi)
	Slide 43: Monte-Carlo Simulation (Estimating pi)
	Slide 44: Workshop

