
High Performance 
Computing in Julia

from the ground up.

Multiprocessing & Cluster Computing

7/10



Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process



Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process

Memory



Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process

Local stack for 
each thread



Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process

Threads can access 
process memory



Multithreading Paradigm

Limitations:

• Memory is limited to the 
memory of a single machine

• CPU cores are limited to the 
single machine

• Is not scalable

Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process



Multiprocessing Paradigm

Instructions

Constant Data

Heap

Stack

Local 
Stack

Local 
Stack

Local 
Stack

Local 
Stack

Threads

Process



Multiprocessing Paradigm

Instructions

Constant Data

Heap

Stack

Local 
Stack

Process



Multiprocessing Paradigm

Instructions

Constant Data

Heap

Stack

Local 
Stack

Process 1



Multiprocessing Paradigm

Instructions

Constant Data

Heap

Stack

Local 
Stack

Process 1

Instructions

Constant Data

Heap

Stack

Local 
Stack

Process 𝑛

⋯

Total processes: 𝑛



Multiprocessing Paradigm



Multiprocessing Paradigm

A

BC



Multiprocessing Paradigm

A

BC

Communication



Multiprocessing Paradigm

Communication:
• Abstract channels of communications 

(commands/data)

• Communication link can be over a 
socket (same machine) or over the 
network through TCP/IP

• Called Message Passing

• The topology of the network defines 
which processes can communicate

• Can also communicate via shared 
memory/shared storage

A

BC



Multiprocessing Paradigm

Advantages:
• Using a message passing approach allows 

processes to run on different machines
which are networked together

• A cluster of machines can have access to 
far more resources than any single 
machine – scalability

Disadvantages:
• Each process needs its own copy of 

functions and data to operate

• Communication between processes 
introduces a lot of latency

• Starting more processes has very high 
latency

A

BC



Multiprocessing (MPI)

• The majority of languages use 
the message passing interface 
(MPI)

• MPI is a standard that has many 
implementations

• Some are specially developed for 
fast networking installed in 
supercomputing clusters 
(Infiniband etc)

• Julia wrapper using MPI.jl

Implementations:
• Open MPI

• MPICH (v3.1 or later)

• Intel MPI

• Microsoft MPI

• IBM Spectrum MPI

• MVAPICH

• Cray MPICH

• Fujitsu MPI

• HPE MPT/HMPT

http://www.open-mpi.org/
http://www.mpich.org/
https://software.intel.com/en-us/mpi-library
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://www.ibm.com/us-en/marketplace/spectrum-mpi
http://mvapich.cse.ohio-state.edu/
https://docs.nersc.gov/development/compilers/wrappers/
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html#cap-03
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00105727en_us


Anatomy of an MPI program

• Each process executes 
the same program

• Information about the 
topology is passed via 
environment variables

• Barriers are used to 
synchronise execution

• Can use MPI commands 
to send information to 
other processes

using MPI

MPI.Init()

comm = MPI.COMM_WORLD

comm_size = MPI.Comm_size(comm)

rank = MPI.Comm_rank(comm)

println("Hello world, I am $(rank) of $(comm_size)")

MPI.Barrier(comm)



Communication Modes (MPI)



Summary MPI

• MPI.jl is a low-level interface for multiprocessing

• On compute clusters with proprietary, fast, interconnect, MPI can be 
essential for achieving maximum performance

• A lot of developer investment to use MPI

• Julia has an inbuilt library for multiprocessing (or distributed) 
computing called Distributed.jl which provides a high-level interface 
for multiprocessing code

John T. Foster – Introduction to MPI and MPI.jl
https://www.youtube.com/watch?v=zPqX638rVG8

https://www.youtube.com/watch?v=zPqX638rVG8


Distributed.jl
Live Example



Cluster Computing



Sulis – HPC Midlands+
Sulis has a total of 25,728 AMD EPYC 
compute cores

90 NVIDIA A100 GPUs

1.8 double-precision PFLOPS

Each compute node has 2 x AMD EPYC 7742 
2.25 GHz 64-core processors and 512GB of 
RAM

Runs on Linux (CentOS)

Uses the SLURM Scheduler

Not Sulis



Connect to the Cluster
You can login to the cluster over the internet 
via an SSH tunnel

SSH is an encrypted way of communicating 
over a network, which provides the user a 
terminal (shell) on the remote machine

For security, most clusters will only allow 
access from a trusted range of IP addresses

You may need to connect to a VPN, and then 
SSH into the login node

Users should not run code on the login node, 
but instead only manage their files and 
submit jobs to run on the compute nodes



Submitting Jobs: 
SLURM
SLURM (Simple Linux for Utility Resource 
Management)

Standard for majority of HPCs

Acts a scheduling system to run many users 
jobs at the same time

Allocates isolated resources to a job so that 
no other users can access them



Environment Modules
A HPC needs to manage a huge range of 
software with conflicting versions for many 
users

The admins install packages inside of 
environment modules

This allows the user to select which versions 
of software they want to use

Software is made available via environment 
variables which are cleared when opening a 
new terminal session

Modules can be loaded on each login by 
adding the module load command to the 
“.bashrc” file in your home directory



Working on a Cluster
Live Demonstration


	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Multithreading Paradigm
	Slide 7: Multiprocessing Paradigm
	Slide 8: Multiprocessing Paradigm
	Slide 9: Multiprocessing Paradigm
	Slide 10: Multiprocessing Paradigm
	Slide 11: Multiprocessing Paradigm
	Slide 12: Multiprocessing Paradigm
	Slide 13: Multiprocessing Paradigm
	Slide 14: Multiprocessing Paradigm
	Slide 15: Multiprocessing Paradigm
	Slide 16: Multiprocessing (MPI)
	Slide 17: Anatomy of an MPI program
	Slide 18: Communication Modes (MPI)
	Slide 19: Summary MPI
	Slide 20: Distributed.jl
	Slide 21: Cluster Computing
	Slide 22: Sulis – HPC Midlands+
	Slide 23: Connect to the Cluster
	Slide 24: Submitting Jobs: SLURM
	Slide 25: Environment Modules
	Slide 26: Working on a Cluster

