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Multithreading Paradigm

Limitations:

• Memory is limited to the 
memory of a single machine

• CPU cores are limited to the 
single machine

• Is not scalable
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Multiprocessing Paradigm

Communication:
• Abstract channels of communications 

(commands/data)

• Communication link can be over a 
socket (same machine) or over the 
network through TCP/IP

• Called Message Passing

• The topology of the network defines 
which processes can communicate

• Can also communicate via shared 
memory/shared storage

A

BC



Multiprocessing Paradigm

Advantages:
• Using a message passing approach allows 

processes to run on different machines
which are networked together

• A cluster of machines can have access to 
far more resources than any single 
machine – scalability

Disadvantages:
• Each process needs its own copy of 

functions and data to operate

• Communication between processes 
introduces a lot of latency

• Starting more processes has very high 
latency

A

BC



Multiprocessing (MPI)

• The majority of languages use 
the message passing interface 
(MPI)

• MPI is a standard that has many 
implementations

• Some are specially developed for 
fast networking installed in 
supercomputing clusters 
(Infiniband etc)

• Julia wrapper using MPI.jl

Implementations:
• Open MPI

• MPICH (v3.1 or later)

• Intel MPI

• Microsoft MPI

• IBM Spectrum MPI

• MVAPICH

• Cray MPICH

• Fujitsu MPI

• HPE MPT/HMPT

http://www.open-mpi.org/
http://www.mpich.org/
https://software.intel.com/en-us/mpi-library
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://www.ibm.com/us-en/marketplace/spectrum-mpi
http://mvapich.cse.ohio-state.edu/
https://docs.nersc.gov/development/compilers/wrappers/
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html#cap-03
https://support.hpe.com/hpesc/public/docDisplay?docLocale=en_US&docId=a00105727en_us


Anatomy of an MPI program

• Each process executes 
the same program

• Information about the 
topology is passed via 
environment variables

• Barriers are used to 
synchronise execution

• Can use MPI commands 
to send information to 
other processes

using MPI

MPI.Init()

comm = MPI.COMM_WORLD

comm_size = MPI.Comm_size(comm)

rank = MPI.Comm_rank(comm)

println("Hello world, I am $(rank) of $(comm_size)")

MPI.Barrier(comm)



Communication Modes (MPI)



Summary MPI

• MPI.jl is a low-level interface for multiprocessing

• On compute clusters with proprietary, fast, interconnect, MPI can be 
essential for achieving maximum performance

• A lot of developer investment to use MPI

• Julia has an inbuilt library for multiprocessing (or distributed) 
computing called Distributed.jl which provides a high-level interface 
for multiprocessing code

John T. Foster – Introduction to MPI and MPI.jl
https://www.youtube.com/watch?v=zPqX638rVG8

https://www.youtube.com/watch?v=zPqX638rVG8


Distributed.jl
Live Example



Cluster Computing



Sulis – HPC Midlands+
Sulis has a total of 25,728 AMD EPYC 
compute cores

90 NVIDIA A100 GPUs

1.8 double-precision PFLOPS

Each compute node has 2 x AMD EPYC 7742 
2.25 GHz 64-core processors and 512GB of 
RAM

Runs on Linux (CentOS)

Uses the SLURM Scheduler

Not Sulis



Connect to the Cluster
You can login to the cluster over the internet 
via an SSH tunnel

SSH is an encrypted way of communicating 
over a network, which provides the user a 
terminal (shell) on the remote machine

For security, most clusters will only allow 
access from a trusted range of IP addresses

You may need to connect to a VPN, and then 
SSH into the login node

Users should not run code on the login node, 
but instead only manage their files and 
submit jobs to run on the compute nodes



Submitting Jobs: 
SLURM
SLURM (Simple Linux for Utility Resource 
Management)

Standard for majority of HPCs

Acts a scheduling system to run many users 
jobs at the same time

Allocates isolated resources to a job so that 
no other users can access them



Environment Modules
A HPC needs to manage a huge range of 
software with conflicting versions for many 
users

The admins install packages inside of 
environment modules

This allows the user to select which versions 
of software they want to use

Software is made available via environment 
variables which are cleared when opening a 
new terminal session

Modules can be loaded on each login by 
adding the module load command to the 
“.bashrc” file in your home directory



Working on a Cluster
Live Demonstration
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