
High Performance 
Computing in Julia

from the ground up.

Research Software Engineering

8/10



Aims

• To discuss key skills necessary for writing high quality, professional 
code

• Provide resources on how to develop your SE skills

• Discuss how to work with others & contribute to open source projects

• Show an example of writing a public package



Software Engineering Skills

Version Control Testing

Documentation Reproducibility



Version Control



Version Control



Version Control



Version Control



Version Control

main

add-ui
“branch” “pull request”

testing



Git & GitHub



Git & GitHub

Origin

Local Repo



Git & GitHub

Push



Git & GitHub

Pull



Git & GitHub

HPC



How to learn Git

• Avoid the command line

• Use a Git GUI tool, like GitHub Desktop or GitKraken

• Follow online guides (e.g. https://docs.github.com/en/get-started)

• Upload an existing project to GitHub and start using it for all your 
projects

• Write your papers using Git (integrates with Overleaf). 

https://docs.github.com/en/get-started


Documentation
How to write easily understandable code



Commenting is not documentation

• Comments are redundant, they 
can be inferred by the code

• Variable names are not 
descriptive, especially function 
names

• Comments are only necessary 
because of the poor variable 
names



Commenting is not documentation

• Docstring disambiguates the 
type of distance, allowing a 
shorter function name

• The type restriction helps 
document how this function 
should be used

• Pythagoras is very standard, and 
does not need explaining











Documentation Overview

• Write good docstrings with examples (and possibly 
tests) for your public API

• Use good, descriptive variable names

• Comments can be used to reflect the why of the the 
code, instead of the what

• Code changes over time – make sure the comments 
are updated too!

• Read “Clean Code” by Robert Martin



Unit Testing
How to make sure your code is correct



Unit Testing

• Unit tests are small, self-contained programs 
that test the outputs of a function

• Can be used to check for both logical & 
syntactic errors

• Ensures software works as expected

• Should test the edge cases especially

• Automates the process of testing the software 
after changes





Unit Testing

Unit test the outward facing API of your code

Don’t focus on testing every internal function, 
just the important ones

Try out Test Driven Development (TDD)

Integrate CI pipelines into your code –
automatically run tests on pull requests

Monitor code coverage over time



Reproducibility
Ensuring that you can get consistent results



Sharing code with others

Absolute Paths
import numpy as np

def get_data():

path = "D:\\Development\\University\\rledts\\data\\current.npy"

return np.load(path)

Inject Folder
import numpy as np

import os

def get_data(data_folder: str):

path = os.path.join(data_folder, "current.npy")

return np.load(path)



Sharing code with others

Absolute Paths
import numpy as np

def get_data():

path = "D:\\Development\\University\\rledts\\data\\current.npy"

return np.load(path)

Relative Path from file
import numpy as np

import os

def get_data():

src_dir = os.path.dirname(__file__)

data_dir = os.path.join(src_dir, os.pardir, "data")

path = os.path.join(data_dir, "current.npy")

return np.load(path)



Reproducible Environment

• Make sure you are always using an environment in Julia

• Keep track of packages installed in Package.toml

• Keep your global environment clean of packages to avoid conflicts 
and to ensure your dev environment has all the packages necessary

• Allows others to clone your code and run easily



Random Number Generation

• The majority of random 
numbers generated by a 
machine are pseudo-random

• You can seed a RNG to produce 
predictable and reproducible
results

• Is useful for regenerating data or 
running a simulation for longer

• Can be useful for debugging if 
some errors only occur randomly



Contributing to Open Source 
Projects
Introduction to Open Source development (1/2)



Creating a Julia Package
Introduction to Open Source development (2/2)



Resources

• Chris Rackauckas – “Developing Julia Packages” -
https://www.youtube.com/watch?v=QVmU29rCjaA

• PkgTemplates.jl - https://juliaci.github.io/PkgTemplates.jl

• Documenter.jl - https://documenter.juliadocs.org

• Example: https://github.com/JamieMair/Experimenter.jl

https://www.youtube.com/watch?v=QVmU29rCjaA
https://juliaci.github.io/PkgTemplates.jl
https://documenter.juliadocs.org/
https://github.com/JamieMair/Experimenter.jl

	Default Section
	Slide 1: High Performance Computing in Julia from the ground up.
	Slide 2: Aims
	Slide 3: Software Engineering Skills

	Version Control
	Slide 4: Version Control
	Slide 5: Version Control
	Slide 6: Version Control
	Slide 7: Version Control
	Slide 8: Version Control
	Slide 9: Git & GitHub
	Slide 10: Git & GitHub
	Slide 11: Git & GitHub
	Slide 12: Git & GitHub
	Slide 13: Git & GitHub
	Slide 14: How to learn Git

	Documentation
	Slide 15: Documentation
	Slide 16: Commenting is not documentation
	Slide 17: Commenting is not documentation
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Documentation Overview
	Slide 23: Unit Testing
	Slide 24: Unit Testing
	Slide 25
	Slide 26: Unit Testing
	Slide 27: Reproducibility
	Slide 28: Sharing code with others
	Slide 29: Sharing code with others
	Slide 30: Reproducible Environment
	Slide 31: Random Number Generation
	Slide 32: Contributing to Open Source Projects
	Slide 33: Creating a Julia Package
	Slide 34: Resources


