
High Performance 
Computing in Julia

from the ground up.

Introduction to GPU Programming & 
CUDA.jl

9/10



Aims

• To introduce GPU hardware

• To discuss the different options for GPU programming

• To introduce array-based GPU programming with CUDA



Random Access Memory (RAM)
e.g. DDR3, DDR4, DDR5

Storage
e.g. HDD/SSD

Central Processing Unit (CPU)
e.g. Intel or AMD CPUs

Graphics Processing Unit (GPU)
e.g. NVIDIA/AMD



General-Purpose Graphics Processing Unit
(GPGPU)
• Massively parallel co-processors which work alongside 

the CPU

• Traditionally used to accelerate graphics workloads

• Hardware is also useful for accelerating many modern 
workloads (e.g. AI/ML/Fluid dynamics etc)

• While CPUs has 10s of cores, GPUs have 10,000s of 
cores



Anatomy of a GPU



Anatomy of a GPU

PCIe Bus



Anatomy of a GPU DRAM
e.g. GDDR6/HBM2



Anatomy of a GPU Power Delivery



Anatomy of a GPU
Processor



Anatomy of a GPU: A100

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Anatomy of a GPU: A100
HBM2
Memory

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Anatomy of a GPU
Cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Anatomy of a GPU
Streaming 
Multiprocessor (SM)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


GPU Cores

• Contains many “cores” which can be used to 
perform math operations

• Less general purpose and slower than a CPU “core”

• Focuses on floating-point and integer math (32 
bits)

• Has a much smaller cache than a CPU core

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


GPU Platforms



CUDA

• NVIDIA has the most market share in HPC GPU applications 
(especially in AI/ML)

• CUDA is the most popular hardware platform and API for 
programming GPUs

• Provides an abstraction to allow programming for many different GPU 
models, providing a virtual instruction set to the programmer

• Has GPU implementations of common algorithms such including 
BLAS, FFT, RNG and linear solvers

• More recently, has CUDNN for machine learning acceleration



CUDA.jl

CUDA C API



CUDA.jl

CUDA C API

CUDA.jl



CUDA.jl

CUDA C API

CUDA.jl

Native Julia

Idiomatic 
Wrapper



CUDA.jl

CUDA C API

CUDA.jl

Native Julia

Idiomatic 
Wrapper

e.g. CUDA Array Types 
& sum, mul etc



CUDA.jl

CUDA C API

CUDA.jl

Native Julia

Idiomatic 
Wrapper



CUDA.jl

CUDA C API

CUDA.jl

Native Julia

Compiler
Bindings

Idiomatic 
Wrapper



CUDA.jl

CUDA C API

CUDA.jl

LLVM

Native Julia

Compiler
Bindings

Idiomatic 
Wrapper



CUDA.jl

CUDA C API

CUDA.jl

LLVM

Native Julia

Idiomatic 
Wrapper

Device 
Code

Compiler
Bindings



CUDA.jl
Array Programming
https://github.com/MPAGS-HPC-in-Julia/gpu-demo

https://github.com/MPAGS-HPC-in-Julia/gpu-demo


Vector Addition: 𝒪(𝑛)



Matrix Multiplication: 𝒪(𝑛3)



Array Programming with CUDA.jl

Restriction

• Scalar indexing on GPU transfers 
data between GPU and CPU and 
is very slow

• All memory required by the 
computation on the GPU must
already exist on the GPU 

• Broadcasted functions must be 
type stable to be successfully 
compiled into native GPU code

Tip

• Avoid “for” loops and use 
broadcasting and generic 
functions

• Use in-place operations where 
possible to avoid excessive 
allocation & copying

• Use the “@code_warntype” 
macro to make sure the function 
is type safe



Generic GPU Programming

• Stick to broadcasting and functions with GPU specialisations such as 
“map”, “reduce”, “sum” etc

• This allows code to work with both CPU and GPU arrays

• If code is more complex, and requires a “for” loop, you must write a 
custom GPU program – called a kernel

• CUDA.jl allows us to write kernels in pure Julia, which can get 
compiled to native device code

• Packages like KernelAbstractions.jl can help to write generic device-
independent code



Next Session – CUDA.jl Kernel Programming

Assignment

https://classroom.github.com/a/q9ycWkI6

Task:
• Calculate the visualisation for the Julia set fractal using the GPU

https://classroom.github.com/a/q9ycWkI6


Julia Set


