High Performance

Computing in Julia
from the ground up.

Introduction to GPU Programming &
CUDA.ji

9/10

Aims

* To introduce GPU hardware
* To discuss the different options for GPU programming
* To introduce array-based GPU programming with CUDA

GSKILL
GCSKILL

(intel)' Random Access Memory (RAM)
SRSl c.c. DDR3, DDR4, DDR5

Central Processing Unit (CPU)
e.g. Intel or AMD CPUs

4th Gen
Intel® Core™ i7

ey

Storage

Graphics Processing Unit (GPU) e.g. HDD/SSD

e.g. NVIDIA/AMD

General-Purpose Graphics Processing Unit
(GPGPU)

* Massively parallel co-processors which work alongside
the CPU

* Traditionally used to accelerate graphics workloads

* Hardware is also useful for accelerating many modern
workloads (e.g. Al/ML/Fluid dynamics etc)

 While CPUs has 10s of cores, GPUs have 10,000s of
cores

Anatomy of a GPU

}-a!!i.,.'"

v I‘(OL _—-—/'\ = I

Anatomy of a GPU

}-a!!i.,.'"

v I‘(OL _—-—/'\ = I

PCle Bus

Anatomy of a GPU DRAM

e.g. GDDR6/HBM?2

An ato my Of a GPU Power Delivery

}'ssb.-j.,.-

poe P(@L ____/‘\ T

Anatomy of a GPU

Processor

(i B i E’E ;
s 1‘(@L ___/‘\

Anatomy of a GPU: A100

PCI Express 4.0 Host Interface

Memory Controller
13]j013u0g Alowdy

J13)j0u09 Kowapy

-
i
£
=
)
(5]
=
)
£
3
=
=
L
2
£
)
o
=)
)
=
3
=

13jjou0) Klowsapy

Memory Controller
J13]j053u09 K1owpy

|
|

Memory Controller
J3jjo5u0D AlouRp

Memory Controller
13]j013u0D Alowdy

R S
NVLink

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Anatomy of a GPU: A100

PCI Express 4.0 Host Interface

Memory Controller
13]j013u0g Alowdy

J13)j0u09 Kowapy

-
i
£
=
)
(5]
=
)
£
3
=
=
L
2
£
)
o
=)
)
=
3
=

13jjou0) Klowsapy

Memory Controller
J13]j053u09 K1owpy

|
|

Memory Controller
J3jjo5u0D AlouRp

Memory Controller
13]j013u0D Alowdy

R S
NVLink

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Anatomy of a GPU

PCI Express 4.0 Host Interface

Memory Controller
13]j013u0g Alowdy

J13)j0u09 Kowapy

-
i
£
=
)
(5]
=
)
£
3
=
=
L
2
£
)
o
<
r
£
d
=

13jjou0) Klowsapy

Memory Controllar
J13]j053u09 K1owpy

Memory Controller
J3jjo5u0D AlouRp

Memory Controller
13]j013u0D Alowdy

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Streaming

Anatomy of a GPU Multiprocessor (SM)

PCI Express 4.0 Hos |nterface

Memory Controller
13]j013u0g Alowdy

J13)j0u09 Kowapy

-
i
£
=
)
(5]
=
)
£
3
=
=
L
2
£
)
o
=)
)
=
3
=

13jjou0) Klowsapy

Memory Controller
J13]j053u09 K1owpy

Memory Controller
J3jjo5u0D AlouRp

Memory Controller
13]j013u0D Alowdy

R S
NVLink

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

O r e S INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/

* Contains many “cores” which can be used to
perform math operations
e Less general purpose and slower than a CPU “core” @S
* Focuses on floating-point and integer math (32
b its) INT32 INT32
* Has a much smaller cache than a CPU core

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

FP32 FP32 FP64
FP32 FP32 FP64

FP32|FP32 FP64

L1 Instruction Cache

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

TENSOR CORE

FP32 FP32| FPe4

FP32|FP32 FPe4

FP32|FP32 FPe4

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32|FP32 FPs4

FP32 FP32 FP64
FP32 FP32| FP64

FP32|FP32 FP64

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

TENSOR CORE

FP32 FP32 FP64

FP32 FP32 FPe4

FP32 FP32 FPo4

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

INT32 INT32
INT32 INT32
INT32 INT32

INT32 INT32

LD/ LD/

SFU ST ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

FP32 FP32 FPe4

FP32FP32 FPe4

FP32FP32 FP64
TENSOR CORE

FP32(FP32 FPe4

FP32|FP32 FPe4

FP32 FP32 FP64

FP32|FP32 FPe4

LD/ | LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU
L0 Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPe4

FP32 FP32 FP64

FP32 FP32 FPe4

FP32 FP32| FPe4
TENSOR CORE
FP32 FP32| FP64

FP32 FP32 FP64

FP32 FP32 FP64

FP32FP32 FPe4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA.
CUDA

GPU Platforms

CUDA

* NVIDIA has the most market share in HPC GPU applications
(especially in Al/ML)

* CUDA is the most popular hardware platform and API for
programming GPUs

* Provides an abstraction to allow programming for many different GPU
models, providing a virtual instruction set to the programmer

* Has GPU implementations of common algorithms such including
BLAS, FFT, RNG and linear solvers

* More recently, has CUDNN for machine learning acceleration

CUDA.j

CUDA C API

CUDA.j

CUDA C API

CUDA.j

)

CUDA C API Native Julia

C U DA J | e.g. CUDA Array Types

& sum, mul etc

)

CUDA C API Native Julia

CUDA.j

)

CUDA C API Native Julia

CUDA.j

CUDA C API Native Julia

Compiler
Bindings

CUDA.j

CUDA C API Native Julia

Compiler
Bindings

CUDA.j

CUDA C API Native Julia

Compiler
Bindings

Device
Code

CUDA.jl

Array Programming
https://github.com/MPAGS-HPC-in-Julia/gpu-demo

https://github.com/MPAGS-HPC-in-Julia/gpu-demo

Vector Addition: O(n)

Time (s)

10 2

104

1076

108

—e— CPU
—m— GPU

101 102

10° 10® 107 108

n

103 104

10°

Matrix Multiplication: O (n>)

10° +

-8 /-8-——-—8 -8 -8-——8——-8B-0——8

o
-

3

Q

o

N —l— CPU

3 —Q@— GPU

S — = = 200x
e

O

Q

o’

Array Programming with CUDA.jl

Restriction Tip

 Scalar indexing on GPU transfers ¢ Avoid “for” loops and use
data between GPU and CPU and broadcasting and generic

is very slow functions

* All memory required by the e Use in-place operations where
computation on the GPU must possible to avoid excessive
already exist on the GPU allocation & copying

* Broadcasted functions must be * Use the “@code_warntype”
type stable to be successfully macro to make sure the function

compiled into native GPU code is type safe

Generic GPU Programming

e Stick to broadcasting and functions with GPU specialisations such as

7 U »n

“map”, “reduce”, “sum” etc
* This allows code to work with both CPU and GPU arrays

* If code is more complex, and requires a “for” loop, you must write a
custom GPU program — called a kernel

* CUDA.|jl allows us to write kernels in pure Julia, which can get
compiled to native device code

* Packages like KernelAbstractions.jl can help to write generic device-
independent code

Next Session — CUDA.jl Kernel Programming

Assighment

https://classroom.github.com/a/q9ycWkl6

Task:

* Calculate the visualisation for the Julia set fractal using the GPU

https://classroom.github.com/a/q9ycWkI6

Julia Set

